Robust Gain Scheduling for Smart-Structures in Parallel Robots

  • Stephan Algermissen
  • Michael Sinapius
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 67)


Smart-structures offer the potential to increase the productivity of parallel robots by reducing disturbing vibrations caused by high dynamic loads. In parallel robots the vibration behavior of the structure is position dependent. A single robust controller is not able to gain satisfying control performance within the entire workspace. Hence, vibration behavior is linearized at several operating points and robust controllers are designed. Controllers can be smoothly switched by gain-scheduling. A stability proof for fast varying scheduling parameters based on the Small-Gain Theorem is developed. Experimental data from Triglide, a four degree of freedom (DOF) parallel robot of the Collaborative Research Center 562, validate the presented concepts.


Vibration Isolation Robust Controller Parallel Robot Linear Fractional Transformation Vibration Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Book, W.J.: Controlled motion in an elastic world. Journal of Dynamic Systems, Measurement, and Control 115(2B), 252–261 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Adams, R.J., Apkarian, P., Chrétien, J.-P.: Robust control approaches for a two-link flexible manipulator. In: 3rd International Conference on Dynamics and Control of Structures in Space, pp. 101–116 (1996)Google Scholar
  3. 3.
    Karkoub, M., Yigit, A.S.: Vibration control of a four-bar mechanism with a flexible coupler link. Journal of Sound and Vibration 222(2), 171–189 (1999)CrossRefGoogle Scholar
  4. 4.
    Anderson, E.H., Leo, D.J., Holcomb, M.D.: Ultraquiet platform for active vibration isolation. In: Chopra, I. (ed.) Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 2717, pp. 436–451 (1996)Google Scholar
  5. 5.
    Joshi, A., Kim, W.-J.: Modeling and multivariable control design methodologies for hexapod-based satellite vibration isolation. Journal of Dynamic Systems, Measurement, and Control 127(4), 700–704 (2005)CrossRefGoogle Scholar
  6. 6.
    Wang, X., Mills, J.: A fem model for active vibration control of flexible linkages. In: Proc. of IEEE International Conference on Robotics and Automation (ICRA), vol. 5, pp. 1050–4729 (2004) ISSN 1050-4729Google Scholar
  7. 7.
    Wang, X., Mills, J.K.: Active control of configuration-dependent linkage vibration with application to a planar parallel platform. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 4327–4332 (2005)Google Scholar
  8. 8.
    Wang, X.: Dynamic Modeling, Experimental Identification, and Active Vibration Control Design of a Smart Parallel Manipulator. Ph.D. thesis, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto (2005)Google Scholar
  9. 9.
    Zhang, X., Mills, J., Cleghorn, W.: Dynamic modeling and experimental validation of a 3-prr parallel manipulator with flexible intermediate links. Journal of Intelligent and Robotic Systems 50(4), 323–340 (2007)zbMATHCrossRefGoogle Scholar
  10. 10.
    Zhou, K., Doyle, J., Glover, K.: Robust and Optimal Control. Prentice-Hall, Englewood Cliffs (1996)zbMATHGoogle Scholar
  11. 11.
    Algermissen, S., Rose, M., Keimer, R., Monner, H.P., Breitbach, E.: Automated synthesis of robust controllers for smart-structure applications in parallel robots. In: Proc. of AIAA/ASME/AHS Adaptive Structures Conference, Honolulu, USA (2007)Google Scholar
  12. 12.
    Algermissen, S., Rose, M., Keimer, R., Monner, H.P., Sinapius, M.: Vibration control for smart parallel robots using robust gain-scheduling. In: Borgmann, H. (ed.) ACTUATOR - International Conference on New Actuators, pp. 429–432. Hanseatische Veranstaltungs GmbH, Bremen (2008)Google Scholar
  13. 13.
    Algermissen, S., Rose, M., Keimer, R., Sinapius, M.: Robust gain-scheduling for smart-structures in parallel robots. In: 16th Annual International Symposium on Smart Structures and Materials, San Diego, CA, USA (2009)Google Scholar
  14. 14.
    Safonov, M.G.: Imaginary-axis zeros in multivariable hinf optimal control. In: Curtain, R.F. (ed.) Proc. NATO Advanced Research Workshop on Modeling, Robustness and Sensitivity Reduction in Control Systems, Modelling, Robustness and Sensitivity Reduction in Control Systems, pp. 71–81. Springer, Berlin (1987)Google Scholar
  15. 15.
    Schütz, D., Budde, C., Raatz, A., Hesselbach, J.: Parallel Kinematic Structures of SFB 562. In: Schütz, D., Wahl, F.M. (eds.) Robotic Systems for Handling and Assembly - Modelling. STAR, vol. 67, pp. 109–124. Springer, Heidelberg (2010)Google Scholar
  16. 16.
    Leith, D.J., Leithead, W.E.: Survey of gain-scheduling analysis and design. International Journal of Control 73(11), 1001–1025 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Rugh, W.J., Shamma, J.S.: Research on gain scheduling. Automatica 36(10), 1401–1425 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Packard, A.: Gain scheduling via linear fractional transformations. Systems & Control Letters 22(2), 79–92 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Braatz, R.D., Morari, M.: On the stability of systems with mixed time-varying parameters. Journal of Robust and Nonlinear Control 7, 105–112 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Paganini, F.: Robust stability under mixed time-varying, time-invariant and parametric uncertainty. Automatica 32(10), 1381–1392 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Shamma, J.S.: Robust stability with time-varying structured uncertainty. IEEE Transactions on Automatic Control 39(4), 714–724 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Teng, J.: Robust Stability and Performance Analysis with Time-Varying Perturbations. Master’s thesis, UC Berkeley, Berkeley, USA (1991)Google Scholar
  23. 23.
    Shamma, J.S., Athans, M.: Gain scheduling: potential hazards and possible remedies. IEEE Control Systems Magazine 12(3), 101–107 (1992) ISSN 0272-1708CrossRefGoogle Scholar
  24. 24.
    Lu, W.-M., Zhou, K., Doyle, J.: Stabilization of linear systems with structured perturbations. Technical Report CIT-CDS 93-014, California Institute of Technology, Pasadena, CA, USA (1993)Google Scholar
  25. 25.
    Packard, A., Doyle, J.: The complex structured singular value. Automatica 29(1), 71–109 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Dullerud, G.E., Paganini, F.G.: A course in robust control theory: a convex approach. Springer, New York (1999)Google Scholar
  27. 27.
    Keimer, R., Sinapius, M.: Design and Implementation of Adaptronic Robot Components. In: Schütz, D., Wahl, F.M. (eds.) Robotic Systems for Handling and Assembly - Modelling. STAR, vol. 67, pp. 413–427. Springer, Heidelberg (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Stephan Algermissen
    • 1
  • Michael Sinapius
    • 1
  1. 1.Institute of Composite Structures and Adaptive SystemsGerman Aerospace Center (DLR)BraunschweigGermany

Personalised recommendations