Skip to main content

Hardware Implementation of Artificial Neural Networks for Arbitrary Boolean Functions with Generalised Threshold Gate Circuits

  • Conference paper
Book cover Advances in Soft Computing (MICAI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6438))

Included in the following conference series:

  • 1439 Accesses

Abstract

This paper describes nanocircuits that draw on negative differential resistance and are capable of implementing complex threshold functions in a single gate structure. Due to nanometer dimensions, high operational frequencies and low power consumption these devices can be used for efficient hardware realisation of artificial neural networks (ANNs). We present state of the art in development of such circuit and focus on Generalised Threshold Gates (GTGs) that are capable of implementing arbitrary Boolean functions in a single gate structure. Algorithm for implementing Boolean functions outputs circuits with predefined weights and thresholds. This enables to construct application specific ANNs and eliminates the requirement for network learning when this kind of gates are used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergman, J., Chang, J., Joo, Y., Matinpour, B., Laskar, J., Jokerst, N., Brooke, M., Brar, B., Beam, E.: RTD/CMOS nanoelectronic circuits: thin-film InP-based resonant tunneling diodes integrated with CMOS circuits. IEEE Electron Device Letters 20(3), 119–122 (1999)

    Article  Google Scholar 

  2. Kelly, P., Thompson, C., McGinnity, T., Maguire, L.: Investigation of a programmable threshold logic gate array. In: 9th International Conference on Electronics, Circuits and Systems, vol. 2, pp. 673–676 (2002)

    Google Scholar 

  3. Pettenghi, H., Avedillo, M.J., Quintana, J.M.: Using multi-threshold threshold gates in rtd-based logic design: A case study. Microelectron. J. 39(2), 241–247 (2008)

    Article  Google Scholar 

  4. Muroga, S.: Threshold logic and its applications. John Wiley & Sons, Chichester (1971)

    MATH  Google Scholar 

  5. Kohavi, Z.: Switching and Finite Automata Theory. McGraw-Hill College (1978)

    Google Scholar 

  6. Fausett, L.V.: Fundamentals of artificial neural networks. Prentice-Hall, Englewood Cliffs (1993)

    Google Scholar 

  7. Schmitt, M.: On computing boolean functions by a spiking neuron. Annals of Mathematics and Artificial Intelligence 24(1-4), 181–191 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Anthony, M.: Boolean functions and artificial neural networks. Technical report, Report Department of Mathematisc and Centre for Discrete and Applicable Mathematics, The London School of Economics and Political Science (2003)

    Google Scholar 

  9. Subirats, J., Gómez, I., Jerez, J., Franco, L.: Optimal synthesis of boolean functions by threshold functions. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4131, pp. 983–992. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Bawiec, M., Nikodem, M.: Generalised threshold gate synthesis based on and/or/not representation of boolean function. In: Design Automation Conference (ASP-DAC), 2010 15th Asia and South Pacific, pp. 861–866 (January 2010)

    Google Scholar 

  11. Pettenghi, H., Avedillo, M., Quintana, J.: Improved nanopipelined rtd adders using generalized threshold gates. IEEE Transactions on Nanotechnology (2009)

    Google Scholar 

  12. Berezowski, K.S., Vrudhula, S.B.K.: Multiple-valued logic circuits design using negative differential resistance devices. In: ISMVL 2007: Proceedings of the 37th International Symposium on Multiple-Valued Logic, Washington, DC, USA, p. 24. IEEE Computer Society, Los Alamitos (2007)

    Google Scholar 

  13. Wu, C., Lai, K.N.: Integrated λ-type differential negative resistance mosfet device. IEEE Journal of Solid-State Circuits 14(6), 1094–1101 (1979)

    Article  Google Scholar 

  14. Gan, K.J., Hsiao, C.C., Wang, S.Y., Chiang, F.C., Tsai, C.S., Chen, Y.H., Kuo, S.H., Chen, C.P., Liang, D.S.: Logic circuit design based on mos-ndr devices and circuits fabricated by cmos process. In: Proceedings of Fifth International Workshop on System-on-Chip for Real-Time Applications, pp. 392–395 (20-25, 2005)

    Google Scholar 

  15. ITRS: Emerging research devices. Technical report, International Technology Roadmap for Semiconductors (2009)

    Google Scholar 

  16. Berezowski, K.S.: Compact binary logic circuits design using negative differential resistance devices. Electronics Letters 42(16), 5–6 (2006)

    Article  Google Scholar 

  17. Bawiec, M.A.: Resonant tunnelling diode-based circuits: Simulation and synthesis. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) Computer Aided Systems Theory - EUROCAST 2009. LNCS, vol. 5717, pp. 873–880. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. El-Bakry, H.M., Atwan, A.: Simplification and Implementation of Boolean Functions. International Journal of Universal Computer Science 1(1), 41–50 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nikodem, M. (2010). Hardware Implementation of Artificial Neural Networks for Arbitrary Boolean Functions with Generalised Threshold Gate Circuits. In: Sidorov, G., Hernández Aguirre, A., Reyes García, C.A. (eds) Advances in Soft Computing. MICAI 2010. Lecture Notes in Computer Science(), vol 6438. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16773-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16773-7_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16772-0

  • Online ISBN: 978-3-642-16773-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics