Skip to main content

Crack Propagation Study Using Double-K and Double-G Fracture Parameters

  • Chapter
  • First Online:
  • 2265 Accesses

Abstract

Recently proposed double-K fracture model and the double-G fracture model belonging to the modified LEFM concept can predict more number of the fracture parameters without needing closed-loop testing system in the experiments such as failure at crack initiation, stable crack propagation, and unstable fracture. The existing analytical method for determining the double-K fracture parameters needs specialized numerical technique because of singularity problem at the integral boundary. For this reason, application of universal form of weight function is introduced and discussed in this chapter to determine double-K fracture parameters using closed-form equations which provide computational efficiency over the existing analytical method. In addition, brittleness of concrete is defined and size-effect study is also carried out using double-K fracture model. Further, equivalency between double-K and double-G fracture models is also studied numerically. Toward the end, a comprehensive study of the influence of size effect, specimen geometry, softening function, loading condition, etc. on these fracture parameters is carried out.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • ASTM International Standard E399-06 (2006) Standard Test Method for Linear-Elastic Method Plane-Strain Fracture Toughness KIC of Metallic Materials. West Conshohocken, PA, Copyright ASTM International: 1–32.

    Google Scholar 

  • Brühwiler E, Wittmann FH (1990) The wedge splitting test: A method of performing stable fracture mechanics tests. Eng Fract Mech 35: 117–125.

    Article  Google Scholar 

  • Bueckner HF (1970) A novel principle for the computation of stress intensity factors. Z Angew Math Mech 50: 529–546.

    MathSciNet  MATH  Google Scholar 

  • Carpinteri A (1989a) Decrease of apparent tensile and bending strength with specimen size: Two different explanations based on fracture mechanics. Int J Solid Struct 25(4): 407–429.

    Article  Google Scholar 

  • Carpinteri A (1989b) Cusp catastrophe interpretation of fracture instability. J Mech Phys Solid 37(5): 567–582.

    Article  MATH  Google Scholar 

  • Carpinteri A (1989c) Post-peak and post-bifurcation analysis of cohesive crack propagation. Eng Fract Mech 32: 265–278.

    Article  Google Scholar 

  • CEB-Comite Euro-International du Beton-EB-FIP Model Code 1990 (1993) Bulletin D’Information No. 2123/214, Lausanne.

    Google Scholar 

  • Fett T, Mattheck C, Munz D (1987) On calculation of crack opening displacement from the stress intensity factor. Eng Fract Mech 27: 697–715.

    Article  Google Scholar 

  • Glinka G, Shen G (1991) Universal features of weight functions for cracks in Mode I. Eng Fract Mech 40: 1135–1146.

    Article  Google Scholar 

  • Jenq YS, Shah SP (1985a) Two parameter fracture model for concrete. J Eng Mech ASCE 111(10): 1227–1241.

    Article  Google Scholar 

  • Jenq YS, Shah SP (1985b) A fracture toughness criterion for concrete. Eng Fract Mech 21: 1055–1069.

    Article  Google Scholar 

  • Karihaloo BL, Nallathambi P (1990) Size-effect prediction from effective crack model for plain concrete. Mater Struct 23(3): 178–185.

    Article  Google Scholar 

  • Karihaloo BL, Nallathambi P (1991) Notched beam test: Mode I fracture toughness. Fracture Mechanics Test Methods for Concrete. Report of RILEM Technical Committee 89-FMT (Edited by SP Shah, A Carpinteri), London, Chapman & Hall: 1–86.

    Google Scholar 

  • Kim J-K, Lee C-S, Park C-K, Eo S-H (1997) The fracture characteristics of crushed limestone sand concrete. Cement Concr Res 27: 1719–1729.

    Article  Google Scholar 

  • Kumar S (2010) Behaviour of fracture parameters for crack propagation in concrete. Ph.D. Thesis submitted to Department of Civil Engineering, Indian Institute of Kharagpur, India.

    Google Scholar 

  • Kumar S, Barai SV (2008a) Influence of specimen geometry and size-effect on the K R-curve based on the cohesive stress in concrete. Int J Fract 152: 127–148.

    Article  Google Scholar 

  • Kumar S, Barai SV (2008b) Influence of specimen geometry on determination of double-K fracture parameters of concrete: A comparative study. Int J Fract 149: 47–66.

    Article  Google Scholar 

  • Kumar S, Barai SV (2008c) Cohesive crack model for the study of nonlinear fracture behaviour of concrete. J Inst Eng (India), CV 89 (Nov.): 7–15.

    Google Scholar 

  • Kumar S, Barai SV (2009a) Determining double-K fracture parameters of concrete for compact tension and wedge splitting tests using weight function. Eng Fract Mech 76: 935–948.

    Article  Google Scholar 

  • Kumar S, Barai SV (2009b) Effect of softening function on the cohesive crack fracture parameters of concrete CT specimen. Sadhana-Acad Proc Eng Sci 36(6): 987–1015.

    Article  Google Scholar 

  • Kumar S, Barai SV (2009c) Equivalence between stress intensity factor and energy approach based fracture parameters of concrete. Eng Fract Mech 76: 1357–1372.

    Article  Google Scholar 

  • Kumar S, Barai SV (2009d) Size-effect of fracture parameters in concrete: A comparative study. Comput Concr Int J (under review).

    Google Scholar 

  • Kumar S, Barai SV (2009e) Weight function approach for determining crack extension resistance based on the cohesive stress distribution in concrete. Eng Fract Mech 76: 1131–1148.

    Article  Google Scholar 

  • Kumar S, Barai SV (2009f) Influence of loading condition and size-effect on the K R-curve based on the cohesive stress in concrete. Int J Fract 156: 103–110.

    Article  Google Scholar 

  • Kumar S, Barai SV (2010a) Determining the double-K fracture parameters for three-point bending notched concrete beams using weight function. Fatigue Fract Eng Mater Struct DOI: 10.1111/j.1460-2695.2010.01477.x.

    Google Scholar 

  • Kumar S, Barai SV (2010b) Size-effect prediction from the double-K fracture model for notched concrete beam. Int J Damage Mech 9: 473–497.

    Article  Google Scholar 

  • MATLAB Version 7, The MathWorks, Inc., Copyright 1984–2004.

    Google Scholar 

  • Murakami Y (1987) Stress Intensity Factors Hand Book (Committee on Fracture Mechanics, The Society of Materials Science, Japan), Vol. 1. Oxford, Pergamon Press.

    Google Scholar 

  • Petersson PE (1981) Crack growth and development of fracture zone in plain concrete and similar materials. Report No. TVBM-100, Lund Institute of Technology.

    Google Scholar 

  • Planas J, Elices M (1990) Fracture criteria for concrete: Mathematical validations and experimental validation. Eng Fract Mech 35: 87–94.

    Article  Google Scholar 

  • Refai TME, Swartz SE (1987) Fracture behavior of concrete beams in three-point bending considering the influence of size effects. Report No. 190, Engineering Experiment Station, Kansas State University.

    Google Scholar 

  • Reinhardt HW, Cornelissen HAW, Hordijk DA (1986) Tensile tests and failure analysis of concrete. J Struct Eng ASCE 112(11): 2462–2477.

    Article  Google Scholar 

  • Rice JR (1972) Some remarks on elastic crack-tip stress fields. Int J Solid Struct 8: 751–758.

    Article  MATH  Google Scholar 

  • RILEM Draft Recommendations (TC89-FMT) (1990) Determination of fracture parameters \(K_{{\textrm{IC}}}^{{\textrm{s}}}\) and CTODc) of plain concrete using three-point bend tests, proposed RILEM draft recommendations. Mater Struct 23(138): 457–460.

    Google Scholar 

  • Shen G, Glinka G (1991) Determination of weight functions from reference stress intensity factors. Theor Appl Fract Mech 15: 237–245.

    Article  Google Scholar 

  • Tada H, Paris PC, Irwin G (1985) The Stress Analysis of Cracks Handbook. Hellertown, PA, Del Research Corporation.

    Google Scholar 

  • Wittmann FH, Rokugo K, Bruhwiller E, Mihashi H, Simopnin P (1988) Fracture energy and strain softening of concrete as determined by compact tension specimens. Mater Struct 21(1): 21–32.

    Google Scholar 

  • Xu S (1999) Determination of parameters in the bilinear, Reinhardt’s non-linear and exponentially non-linear softening curves and their physical meanings. Werkstoffe und Werkstoffprüfung im Bauwesen, Hamburg, Libri BOD: 410–424.

    Google Scholar 

  • Xu S, Reinhardt HW (1998) Crack extension resistance and fracture properties of quasi-brittle materials like concrete based on the complete process of fracture. Int J Fract 92: 71–99.

    Article  Google Scholar 

  • Xu S, Reinhardt HW (1999a) Determination of double-K criterion for crack propagation in quasi-brittle materials, Part I: Experimental investigation of crack propagation. Int J Fract 98: 111–149.

    Article  Google Scholar 

  • Xu S, Reinhardt HW (1999b) Determination of double-K criterion for crack propagation in quasi-brittle materials, Part II: Analytical evaluating and practical measuring methods for three-point bending notched beams. Int J Fract 98: 151–177.

    Article  Google Scholar 

  • Xu S, Reinhardt HW (1999c) Determination of double-K criterion for crack propagation in quasi-brittle materials, Part III: Compact tension specimens and wedge splitting specimens. Int J Fract 98: 179–193.

    Article  Google Scholar 

  • Xu S, Reinhardt HW (2000) A simplified method for determining double-K fracture meter parameters for three-point bending tests. Int J Fract 104: 181–209.

    Article  Google Scholar 

  • Xu S, Zhang X (2008) Determination of fracture parameters for crack propagation in concrete using an energy approach. Eng Fract Mech 75: 4292–4308.

    Article  Google Scholar 

  • Xu S, Zhao Y, Wu Z (2006) Study on the average fracture energy for crack propagation in concrete. J Mater Civil Eng ASCE 18(6): 817–824.

    Article  Google Scholar 

  • Zhao G, Jiao H, Xu S (1991) Study on fracture behavior with wedge splitting test method. Fracture Processes in Concrete, Rock and Ceramics (Edited by van Mier et al.), London, E & F.N. Spon: 789–798.

    Google Scholar 

  • Zhu X (1997) Transport organischer Flüssigkeiten in Betonbauteilen mit Mikro- und Biegerissen. Berlin, Deutscher Ausschuss für Stahlbeton, Heft 475, Beuth Verlag GmbH: S.1–104.

    Google Scholar 

  • Zi G, Bažant ZP (2003) Eignvalue method for computing size effect of cohesive cracks with residual stress, with application to kink-bands in composites. Int J Eng Sci 41: 1519–1534.

    Article  Google Scholar 

  • Zi G, Belytschko T (2003) New crack-tip elements for X-FEM and applications to cohesive cracks. Int J Numer Methods Eng 57: 2221–2240.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailendra Kumar .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer -Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kumar, S., Barai, S.V. (2011). Crack Propagation Study Using Double-K and Double-G Fracture Parameters. In: Concrete Fracture Models and Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16764-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16764-5_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16763-8

  • Online ISBN: 978-3-642-16764-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics