Skip to main content

Beta-Measure for Probabilistic Segmentation

  • Conference paper
Advances in Artificial Intelligence (MICAI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6437))

Included in the following conference series:

Abstract

We propose a new model for probabilistic image segmentation with spatial coherence through a Markov Random Field prior. Our model is based on a generalized information measure between discrete probability distribution (β-Measure). This model generalizes the quadratic Markov measure field models (QMMF). In our proposal, the entropy control is achieved trough the likelihood energy. This entropy control mechanism makes appropriate our method for being used in tasks that require of the simultaneous estimation of the segmentation and the model parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kaus, M.R., Warfield, S.K., Nabavi, A., Black, P.M., Jolesz, F.A., Kikinis, R.: Automated Segmentation of MR Images of Brain Tumors. Radiology 218, 586–591 (2001)

    Article  Google Scholar 

  2. Rivera, M., Ocegueda, O., Marroquín, J.L.: Entropy-controlled quadratic markov measure field models for efficient image segmentation. IEEE Transactions on Image Processing 16, 3047–3057 (2007)

    Article  MathSciNet  Google Scholar 

  3. Hower, D., Singh, V., Johnson, S.: Label set perturbation for mrf based neuroimaging segmentation. In: IEEE International Conference on Computer Vision ICCV 2009, pp. 849–856 (2009)

    Google Scholar 

  4. Chamorro-Martinez, J., Sanchez, D., Prados-Suarez, B.: A Fuzzy Colour Image Segmentation Applied to Robot Vision. In: Advances in Soft Computing Engineering, Design and Manufacturing. Springer, Heidelberg (2002)

    Google Scholar 

  5. Mishra, A., Aloimonos, Y.: Active segmentation for robots. In: International Conference on Intelligent Robots and Systems (2009)

    Google Scholar 

  6. Dalmau, O., Rivera, M., Mayorga, P.P.: Computing the alpha-channel with probabilistic segmentation for image colorization. In: IEEE Proc. Workshop in Interactive Computer Vision (ICV 2007), pp. 1–7 (2007)

    Google Scholar 

  7. Dalmau, O., Rivera, M., Alarcon, T.: Bayesian Scheme for Interactive Colourization, Recolourization and Image/Video Editing. To Appear in Computer Graphics Forum (2010)

    Google Scholar 

  8. Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problem. Commun. Pure Appl. Math., 577–685 (1989)

    Google Scholar 

  9. Hewer, G.A., Kenney, C., Manjunath, B.S.: Variational image segmentation using boundary functions. IEEE Transactions on Image Processing 7, 1269–1282 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Weiss, Y.: Segmentation using eigenvectors: A unifying view. In: ICCV, vol. (2), pp. 975–982 (1999)

    Google Scholar 

  11. Ahmed, M.N., Yamany, S.M., Mohamed, N., Farag, A.A., Moriarty, T.: A modified fuzzy c-means algorithm for bias field estimation and segmentation of mri data. IEEE Trans. Med. Imaging 21(3), 193–199 (2002)

    Article  Google Scholar 

  12. Chuang, K.S., Tzeng, H.L., Chen, S., Wu, J., Chen, T.J.: Fuzzy c-means clustering with spatial information for image segmentation. Computerized Medical Imaging and Graphics 30, 9–15 (2006)

    Article  Google Scholar 

  13. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)

    Article  Google Scholar 

  14. Boykov, Y., Jolly, M.P.: Interactive organ segmentation using graph cuts. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 276–286. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  15. Marroquin, J.L., Velazco, F., Rivera, M., Nakamura, M.: Gauss-markov measure field models for low-level vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 337–348 (2001)

    Article  Google Scholar 

  16. Marroquin, J.L., Arce, E., Botello, S.: Hidden Markov measure field models for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 1380–1387 (2003)

    Article  Google Scholar 

  17. Dalmau, O., Rivera, M.: A general bayesian markov random field model for probabilistic image segmentation. In: Wiederhold, P., Barneva, R.P. (eds.) IWCIA 2009. LNCS, vol. 5852, pp. 149–161. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Cha, S.H.: Comprehensive Survey on Distance/Similarity Measures between Probability Density Functions. International Journal of Mathematical Models and Methods in Applied Sciences 1, 300–307 (2007)

    Google Scholar 

  19. Bezdek, J.C., Coray, C., Gunderson, R., Watson, J.: Detection and characterization of cluster substructure i. linear structure: Fuzzy c-lines. SIAM Journal on Applied Mathematics 40(2), 339–357 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bezdek, J.C., Coray, C., Gunderson, R., Watson, J.: Detection and characterization of cluster substructure ii. fuzzy c- varieties and convex combinations thereof. SIAM Journal on Applied Mathematics 40(2), 358–372 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  21. Taneja, I.J., Gupta, H.: On generalized measures of relative information and inaccuracy. Applications of Mathematics 23, 317–333 (1978)

    MathSciNet  MATH  Google Scholar 

  22. Grady, L., Schiwietz, T., Aharon, S., Westermann, R.: Random Walks for interactive organ segmentation in two and three dimensions: Implementation and validation. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 773–780. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  23. Grady, L.: Multilabel random walker image segmentation using prior models. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CVPR, vol. 1, pp. 763–770. IEEE, Los Alamitos (June 2005)

    Google Scholar 

  24. Kerridge, D.: Inaccuracy and inference. Journal of the Royal Statistical, Series B, 184–194 (1961)

    Google Scholar 

  25. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operation Research (2000)

    Google Scholar 

  26. Geman, D., Reynolds, G.: Constrained restoration and the recovery of discontinuities. IEEE Trans. Pattern Anal. Mach. Intell. 14(3), 367–383 (1992)

    Article  Google Scholar 

  27. Black, M., Rangarajan, A.: On the unification of line processes, outlier rejection, and robust statistics with applications in early vision. Int’l J. Computer Vision 19(1), 57–92 (1996)

    Article  Google Scholar 

  28. Rivera, M., Dalmau, O., Tago, J.: Image segmentation by convex quadratic programming. In: ICPR, pp. 1–5. IEEE, Los Alamitos (2008)

    Google Scholar 

  29. Blake, A., Zisserman, A.: Visual Reconstruction. MIT Press, Cambridge (1987)

    Google Scholar 

  30. Juan, O., Keriven, R.: Trimap segmentation for fast and user-friendly alpha matting. In: Paragios, N., Faugeras, O., Chan, T., Schnörr, C. (eds.) VLSM 2005. LNCS, vol. 3752, pp. 186–197. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  31. Neal, R.M., Hinton, G.E.: A view of the EM algorithm that justifies incremental, sparse, and other variants. In: Jordan, M.I. (ed.) Learning in Graphical Models, pp. 355–368. Kluwer Academic Publishers, Boston (1998)

    Chapter  Google Scholar 

  32. Marroquín, J.L., Santana, E.A., Botello, S.: Hidden Markov measure field models for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 1380–1387 (2003)

    Article  Google Scholar 

  33. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  34. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes in C: the art of scientific computing, 2nd edn. Cambridge University Press, New York (1992)

    MATH  Google Scholar 

  35. Vogel, C.R., Oman, M.E.: Iterative methods for total variation denoising. SIAM J. Sci. Comput. 17, 227–238 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dalmau, O., Rivera, M. (2010). Beta-Measure for Probabilistic Segmentation. In: Sidorov, G., Hernández Aguirre, A., Reyes García, C.A. (eds) Advances in Artificial Intelligence. MICAI 2010. Lecture Notes in Computer Science(), vol 6437. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16761-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16761-4_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16760-7

  • Online ISBN: 978-3-642-16761-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics