Skip to main content

Line Maps in Cluttered Environments

  • Conference paper
  • 1299 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6437))

Abstract

This paper uses the smoothing and mapping framework to solve the SLAM problem in indoor environments; focusing on how some key issues such as feature extraction and data association can be handled by applying probabilistic techniques. For feature extraction, an odds ratio approach to find multiple lines from laser scans is proposed, this criterion allows to decide which model must be merged and to output the best number of models. In addition, to solve the data association problem a method based on the segments of each line is proposed. Experimental results show that high quality indoor maps can be obtained from noisy data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics (Intelligent Robotics and Autonomous Agents). MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  2. Grünwald, P.D.: The Minimum Description Length Principle (Adaptive Computation and Machine Learning). The MIT Press, Cambridge (2007)

    Google Scholar 

  3. Yang, M.Y., Förstner, W.: Plane detection in point cloud data. Technical Report TR-IGG-P-2010-01, Department of Photogrammetry Institute of Geodesy and Geoinformation University of Bonn (2010)

    Google Scholar 

  4. Akaike, H.: A new look at the statistical model identification. IEEE Transactions on Automatic Control 19, 716–723 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  5. Neira, J., Tardós, J.: Data association in stochastic mapping using the joint compatibility test. IEEE Transactions on Robotics and Automation (2001)

    Google Scholar 

  6. Kaess, M., Ranganathan, A., Dellaert, F.: isam: Incremental smoothing and mapping. IEEE Transactions on Robotics 24, 1365–1378 (2008)

    Article  Google Scholar 

  7. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification and scene analysis. Wiley, New York (1973)

    MATH  Google Scholar 

  8. Borges, G.A.: A split-and-merge segmentation algorithm for line extraction in 2-d range images. In: ICPR 2000: Proceedings of the International Conference on Pattern Recognition, Washington, DC, USA, p. 1441. IEEE Computer Society, Los Alamitos (2000)

    Google Scholar 

  9. Siegwart, R., Nourbakhsh, I.R.: Introduction to Autonomous Mobile Robots. Bradford Book (2004)

    Google Scholar 

  10. Thrun, S., Martin, C., Liu, Y., Hähnel, D., Emery Montemerlo, R., Deepayan, C., Burgard, W.: A real-time expectation maximization algorithm for acquiring multi-planar maps of indoor environments with mobile robots. IEEE Transactions on Robotics and Automation 20, 433–442 (2003)

    Article  Google Scholar 

  11. Han, F., Tu, Z., Zhu, S.C.: Range image segmentation by an effective jump-diffusion method. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 1138–1153 (2004)

    Article  Google Scholar 

  12. Bolles, R.C., Fischler, M.A.: A ransac-based approach to model fitting and its application to finding cylinders in range data. In: IJCAI, pp. 637–643 (1981)

    Google Scholar 

  13. Schnabel, R., Wahl, R., Klein, R.: Efficient ransac for point-cloud shape detection. Computer Graphics Forum 26, 214–226 (2007)

    Article  Google Scholar 

  14. Leavers, V.F.: Which hough transform? CVGIP: Image Underst. 58, 250–264 (1993)

    Article  Google Scholar 

  15. Nguyen, V., Gächter, S., Martinelli, A., Tomatis, N., Siegwart, R.: A Comparison of Line Extraction Algorithms using 2D Range Data for Indoor Mobile Robotics. Autonomous Robots 23, 97–111 (2007)

    Article  Google Scholar 

  16. Durrant-Whyte, H.F., Majumder, S., Thrun, S., Battista, M.D., Scheding, S.: A bayesian algorithm for simultaneous localisation and map building. In: ISRR, pp. 49–60 (2001)

    Google Scholar 

  17. Zhang, Z., Faugeras, O.: A 3-d world model builder with a mobile robot. International Journal of Robotics Research 11, 269–285 (1992)

    Article  Google Scholar 

  18. Bailey, T.: Mobile Robot Localisation and Mapping in Extensive Outdoor Environments. PhD thesis, Australian Centre for Field Robotics, University of Sydney (2002)

    Google Scholar 

  19. Castellanos, J.A., Tardós, J.D.: Laser-based segmentation and localization for a mobile robot, pp. 101–108. ASME Press, New York (1996)

    Google Scholar 

  20. Castro, D., Nunes, U., Ruano, A.: Feature extraction for moving objects tracking system in indoor environments. In: Proc. 5th IFAC/Euron Symposium on Intelligent Autonomous Vehicles, pp. 5–7 (2004)

    Google Scholar 

  21. Romero, L., Arellano, J.J.: Robust local localization of a mobile robot using a 2-D laser range finder. In: ENC 2005: Proceedings of the Sixth Mexican International Conference on Computer Science, Puebla, Mexico, pp. 248–255. IEEE Computer Society, Los Alamitos (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Romero, L., Lara, C. (2010). Line Maps in Cluttered Environments. In: Sidorov, G., Hernández Aguirre, A., Reyes García, C.A. (eds) Advances in Artificial Intelligence. MICAI 2010. Lecture Notes in Computer Science(), vol 6437. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16761-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16761-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16760-7

  • Online ISBN: 978-3-642-16761-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics