Skip to main content

Prediction of Non-coding RNA and Their Targets in Spirulina platensis Genome

  • Conference paper

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 115))

Abstract

Non-coding RNAs (ncRNAs), transcripts that have function without being translated to protein, have a number of roles in the cell including important regulatory roles. Efforts to identify the whole set of ncRNAs and then to elucidate their functions would gain better biological understanding. Although ncRNA is another type of genome constituent, most of the genes for ncRNA are overlooked by standard genome annotation of genome sequencing projects. This also happens in Spirulina platensis genome sequencing project. It is because gene finding tools generally are able to identify only protein-coding genes but not non-protein-coding ones. In this study, S. platensis ncRNAs were detected by comparative genomics approach using computational tools, together with RNA secondary structure prediction. It was found that more than 100 predicted ncRNA loci matched with known ncRNAs for example cobalamin riboswitch, RNaseP, Signal Recognition Particle RNA, Group II intron RNA and Yfr1. It has been reported that Yfr1 has been found in most cyanobacterial genomes sequenced. The result showed that more than 70 putative loci were similar to Group II intron RNAs. In addition, approximately 100 predicted ncRNA loci were not matched with any known ncRNAs. The predicted targets for some putative ncRNAs are also proposed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Washietl, S., Hofacker, I.L., Lukasser, M., Hüttenhofer, A., Stadler, P.F.: Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome. Nat. Biotechnol. 23, 1383–1389 (2005)

    Article  CAS  PubMed  Google Scholar 

  2. Storz, G.: An expanding universe of noncoding RNAs. Science 296(5571), 1260–1263 (2002)

    Article  CAS  PubMed  Google Scholar 

  3. Meyer, I.M.: A practical guide to the art of RNA gene prediction. Brief Bioinform. 8(6), 396–414 (2007)

    Article  CAS  PubMed  Google Scholar 

  4. Nawrocki, E.P., Kolbe, D.L., Eddy, S.R.: Infernal 1.0: Inference of RNA alignments. Bioinformatics 25(10), 1335–1337 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. http://genome.jgi-psf.org/nospu/nospu.download.html

  6. http://www.sb-roscoff.fr/Phyto/Genome_Cyanos/ProSS120/

  7. ftp://ftp.ncbi.nih.gov/genbank/genomes/Bacteria/

  8. http://www.ncbi.nlm.nih.gov

  9. Alteschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic Local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)

    Article  Google Scholar 

  10. Edgar, R.C.: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32(5), 1792–1797 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Washietl, S., Hofacker, I.L., Stadler, P.F.: Fast and reliable prediction of noncoding RNAs. Proc. Natl. Acad. Sci. USA 102(7), 2454–2459 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Griffith-Jones, S., Moxon, S., Marshall, M., Khanna, A., Eddy, S.R., Bateman, A.: Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 33, 121–124 (2005)

    Article  Google Scholar 

  13. Busch, A., Richer, A.S., Backofen, R.: IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics 24(24), 2849–2856 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Voß, B., Gierga, G., Axmann, I.M., Hess, W.R.: A motif-based search in bacterial genomes identifies the ortholog of the small RNA Yfr1 in all lineages of cyanobacteria. BMC Genomics 8, 375 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nakamura, T., Naito, K., Yokota, N., Sugita, C., Sugita, M.: A Cyanobacterial Non-coding RNA, Yfr1, is required for Growth Under Multiple Stress Conditions. Plant Cell Physiol. 48(9), 1309–1318 (2007)

    Article  CAS  PubMed  Google Scholar 

  16. Richter, A.S., Schleberger, C., Backofen, R., Steglich, C.: Seed-based INTARNA prediction combined with GFP-reporter system identifies mRNA targets of the small RNA Yfr1. Bioinformatics 26(1), 1–5 (2010)

    Article  CAS  PubMed  Google Scholar 

  17. Eddy, S.R.: The Infernal user’s guide, August 15 (2009), http://infernal.janelia.org/

  18. Toro, N., Jimenez-Zurdo, J.I., Gracia-Rodriguez, F.M.: Bacterial group II introns: not just splicing. FEMS Microbiol. Rev. 31, 342–358 (2007)

    Article  CAS  PubMed  Google Scholar 

  19. Rodionov, D.A., Vitreschak, A.G., Mironov, A.A., Gelfand, M.S.: Comparative genomics of the vitamin B12 metabolism and reglation in prokaryotes. J. Biol. Chem. 278(42), 41148–41159 (2003)

    Article  CAS  PubMed  Google Scholar 

  20. Warner, D.F., Savvi, S., Mizrahi, V., Dawes, S.S.: A riboswitch regulates expression of the Coenzyme B12-Independent methionine synthase in Mycobacterium tuberculosis: Implications for differential methionine synthase function in strain H37Rv and CDC1551. J. Bacteriol. 189(9), 3655–3659 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kazanov, M.D., Vitreschak, A.G., Gelfand, M.S.: Abundance and functional diversity of riboswitches in microbial communities. BMC Genomics 8, 347 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rodinov, D.A., Hebbeln, P., Gelfand, M.S., Eitinger, T.: Comparative and functional genomics analysis of prokaryotic Nickel and Cobalt uptake transporters: Evidence for a novel group of ATP-binding cassette transporters. J. Bacteriol. 188(1), S1 (2006)

    Article  Google Scholar 

  23. Nagai, K., Oubridge, C., Kuglstatter, A., Menichelli, E., Isel, C., Jovine, L.: Structure, function and evolution of the signal recognition particle. EMBO J. 22(14), 3479–3485 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bartel, D.P.: MicroRNAs: target Recognition and Regulatory Functions. Cell 136(2), 215–233 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Makarova, K.S., Wolf, Y.I., van der Oost, J., Koonin, E.V.: Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biol. Direct. 4, 29 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  26. Frank, D., Pace, N.: Ribonuclease P: Unity and diversity in a tRNA processing ribozyme. Annu. Rev. Biochem. 67, 153–180 (1998)

    Article  CAS  PubMed  Google Scholar 

  27. Alifano, P., Rivellini, F., Piscitelli, C., Arraiano, C.M., Bruni, C.B., Carlomagno, M.S.: Ribonuclease E provides substrates for ribonuclease P-dependeent processing of a ploycistronic mRNA. Genes Dev. 8(24), 3021–3031 (1994)

    Article  CAS  PubMed  Google Scholar 

  28. Komine, Y., Kitabatake, M., Yokogawa, T., Nishikawa, K., Inokuchi, H.: A tRNA-like structure is present in 10Sa RNA, a small stable RNA from Escherichia coli. Proc. Natl. Acad. Sci. USA 91(20), 9223–9227 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hartmann, R.K., Heinrich, J., Schlegl, J., Schuster, H.: Precursor of C4 antisense RNA of bacteriophages P1 and P7 is a substrate for RNase P of Escherichia coli. Proc. Natl. Acad. Sci. USA 92(13), 5822–5826 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Peck-Miller, K.A., Altman, S.: Kinetics of the processing of the precursor to 4·5 S RNA, a naturally occurring substrate for RNase P from Escherichia coli. J. Mol. Biol. 221(1), 1–5 (1990)

    Article  Google Scholar 

  31. Moll, I., Afonyushkin, T., Vytvytska, O., Kaberdin, V., And Blasi, U.: Coincident Hfq binding and RNase E cleavage sites on mRNA and small regulatory RNAs. RNA 9(11), 1308–1314 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hofacker, I.L., Fontana, W., Stadler, P.F., Bonhoeffer, S., Tacker, M., Schuster, P.: Fast Folding and Comparison of RNA Secondary Structures. Monatshefte für Chemie. 125(2), 167–188 (1994)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Srisuk, T., Pornputtapong, N., Cheevadhanarak, S., Thammarongtham, C. (2010). Prediction of Non-coding RNA and Their Targets in Spirulina platensis Genome. In: Chan, J.H., Ong, YS., Cho, SB. (eds) Computational Systems-Biology and Bioinformatics. CSBio 2010. Communications in Computer and Information Science, vol 115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16750-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16750-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16749-2

  • Online ISBN: 978-3-642-16750-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics