Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6423))

Included in the following conference series:

  • 1012 Accesses

Abstract

In this paper we investigate stabilities of concepts resulting from extending partial ordering of a set of elements to partial ordering of a larger set of elements. This approach can be applied for facilitating the process of decision making related to automated tests based on knowledge states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, D., Stefanutti, L.: Ordering and Combining Distributed Learning Objects through Skill Maps and Asset Structures. In: Proceedings of the ICCE 2003, pp. 1–9 (2003)

    Google Scholar 

  2. Aleven, V., Koedinger, K.R.: Limitations of Student Control: Do Student Know when they need help? In: Gauthier, G., Frasson, C., VanLehn, K. (eds.) ITS 2000. LNCS, vol. 1839, pp. 292–303. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Baker, R.S., Corbett, A.T., Koedinger, K.R.: Detecting student misuse of intelligent tutoring systems. In: Lester, J.C., Vicari, R.M., Paraguaçu, F. (eds.) ITS 2004. LNCS, vol. 3220, pp. 531–540. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Bogart, K.P.: Some social sciences applications of ordered sets. In: Rival, I. (ed.) Ordered Sets, pp. 759–787. Reidel, Dordrecht (1982)

    Chapter  Google Scholar 

  5. Brunstein, A., Krems, J.: Helps and Hints for Learning with Web Based Learning Systems: The Role of Instructions. In: Lester, J.C., Vicari, R.M., Paraguaçu, F. (eds.) ITS 2004. LNCS, vol. 3220, pp. 794–796. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Chamorro-Premuzic, T., Furnham, A.: Personality predicts academic performance: Evidence from two longitudinal university samples. Journal of Research in Personality 37, 319–338 (2003)

    Article  Google Scholar 

  7. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  8. Davidson, R.A.: Relationship of study approach and exam performance. Journal of Accounting Education 20, 29–44 (2002)

    Article  Google Scholar 

  9. Doignon, J.-P., Falmagne, J.-C.: Spaces for the assessment of knowledge. International Journal of Man-Machine Studies 23, 175–196 (1985)

    Article  MATH  Google Scholar 

  10. Doignon, J.-P., Falmagne, J.-C.: Knowledge Spaces. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  11. Furnham, A., Chamorro-Premuzic, T.: Personality and intelligence as predictors of statistics examination results. Personality and Individual Differences 37, 943–955 (2004)

    Article  Google Scholar 

  12. Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  13. Godin, R., Mili, H.: Building and Maintaining Analysis-Level Class Hierarchies Using Galois Lattices. In: Proc. OOPSLA 1993, Washington, DC, USA (1993); Special issue of Sigplan Notice 28(10), 394–410 (1993)

    Google Scholar 

  14. Hockemeyer, C., Conlan, O., Wade, V., Albert, D.: Applying competence prerequisite structures for e-Learning and skill management. Journal of Universal Computer Science 9, 1428–1436 (2003)

    Google Scholar 

  15. Kuznetsov, S.O.: On stability of a formal concept. Annals of Mathematics and Artificial Intelligence 49, 101–115 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kuznetsov, S., Obiedkov, S., Roth, C.: Reducing the representation complexity of lattice-based taxonomies. In: Priss, U., Polovina, S., Hill, R. (eds.) ICCS 2007. LNCS (LNAI), vol. 4604, pp. 241–254. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Nehme, K., Valtchev, P., Hacene, M.R., Godin, R.: On Computing the Minimal Generator Family for Concept Lattices and Icebergs. In: Ganter, B., Godin, R. (eds.) ICFCA 2005. LNCS (LNAI), vol. 3403, pp. 192–207. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed itemsets for association rules. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 398–416. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  19. Pecheanu, E., Segal, C., Stefanescu, D.: Content modeling in Intelligent Instructional Environment. In: Luo, Y. (ed.) CDVE 2004. LNCS (LNAI), vol. 3190, pp. 1229–1234. Springer, Heidelberg (2003)

    Google Scholar 

  20. Rusch, A., Wille, R.: Knowledge Spaces and Formal Concept Analysis. In: Bock, H.H., Polasek, W. (eds.) Data Analysis and Information Systems. Statistical and Conceptual Approaches, pp. 427–436. Springer, Berlin (1996)

    Chapter  Google Scholar 

  21. Schworm, S., Renkl, A.: Learning by solved example problems: Instructional explanations reduce self-explanation activity. In: Gray, W.D., Schunn, C.D. (eds.) Proceeding of the 24th Annual Conference of the Cognitive Science Society, pp. 816–821. Erlbaum, Mahwah (2002)

    Google Scholar 

  22. Stefanutti, L., Albert, D., Hockemeyer, C.: Derivation of Knowledge Structures for Distributed Learning Objects. In: Ritrovato, P., Allison, C., Cerri, S.A., Dimitrakos, T., Gaeta, M., Salerno, S. (eds.) Towards the Learning Grid: Advances in Human Learning Services. Frontiers in Artificial Intelligence and Applications, vol. 127, pp. 105–112. IOS Press, Amsterdam (2005)

    Google Scholar 

  23. Stewart, K.L., Felicetti, L.A.: Learning styles of marketing majors. Educational Research Quarterly 15, 15–23 (1992)

    Google Scholar 

  24. Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing Iceberg Concept Lattices with Titanic. Data and Knowledge Engineering 42(2), 189–222 (2002)

    Article  MATH  Google Scholar 

  25. Tsovaltzi, D., Fiedler, A., Horacek, H.: A Multi-dimensional Taxonomy for Automating Hinting. In: Lester, J.C., Vicari, R.M., Paraguaçu, F. (eds.) ITS 2004. LNCS, vol. 3220, pp. 772–781. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  26. Wille, R.: Concept lattices and conceptual knowledge systems. Computers Math. Applications 23(6-9), 493–515 (1992)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Encheva, S., Tumin, S. (2010). Diagnostic Tests Based on Knowledge States. In: Pan, JS., Chen, SM., Nguyen, N.T. (eds) Computational Collective Intelligence. Technologies and Applications. ICCCI 2010. Lecture Notes in Computer Science(), vol 6423. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16696-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16696-9_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16695-2

  • Online ISBN: 978-3-642-16696-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics