Advertisement

Multiresolution Histogram Analysis for Color Reduction

  • Giuliana Ramella
  • Gabriella Sanniti di Baja
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6419)

Abstract

A new technique for color reduction is presented, based on the analysis of the histograms of an image at different resolutions. Given an input image, lower resolution images are generated by using a scaling down interpolation method. Then, peaks and pits that are present in the histograms at all resolutions and dominate in the histogram of the input image at full resolution are taken into account to simplify the structure of the histogram of the image at full resolution. The so modified histogram is used to define a reduced colormap. New colors possibly created by the process are changed into the original colors closer to them.

Keywords

Input Image Compression Ratio Multiresolution Analysis Color Distribution Full Resolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Heckbert, P.S.: Color Image Quantization for Frame Buffer Display. In: Proc. ACM SIGGRAPH 1982, vol. 16(3), pp. 297–307 (1982)Google Scholar
  2. 2.
    Plataniotis, K.N., Venetsanopoulos, A.N.: Color Image Processing and Applications. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Rui, Y., Huang, T.S.: Image Retrieval: Current Techniques, Promising Directions, and Open Issues. Journal of Visual Communication and Image Representation 10, 39–62 (1999)CrossRefGoogle Scholar
  4. 4.
    Braquelaire, J.P., Brun, L.: Comparison and Optimization of Methods of Color Image Quantization. IEEE Transactions on Image Processing 6(7), 1048–1052 (1997)CrossRefGoogle Scholar
  5. 5.
    Bing, Z., Junyi, S., Qinke, P.: An adjustable algorithm for color quantization. Pattern Recognition Letters 25, 1787–1797 (2004)CrossRefGoogle Scholar
  6. 6.
    Chen, T.W., Chen, Y.L., Chien, S.Y.: Fast Image Segmentation Based on K-Means Clustering with Histograms in HSV Color Space. In: Proc. of IEEE 10th Workshop on Multimedia Signal Processing, pp. 322–325 (2008)Google Scholar
  7. 7.
    Gervautz, M., Purgathofer, W.: A Simple Method for Color Quantization: Octree Quantization. In: Glassner, A.S. (ed.) Graphics Gems, pp. 287–293. Academic Press, London (1990)CrossRefGoogle Scholar
  8. 8.
    Delon, J., Desolneux, A., Lisani, J.L., Petro, A.B.: A Nonparametric Approach for Histogram Segmentation. IEEE Transactions on Image Processing 16(1), 253–261 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kim, N., Kehtarnavaz, N.: DWT-based scene-adaptive color quantization. Real-Time Imaging 11, 443–453 (2005)CrossRefGoogle Scholar
  10. 10.
    Ramella, G., Sanniti di Baja, G.: Color quantization by multiresolution analysis. In: Jiang, X., Petkov, N. (eds.) CAIP 2009. LNCS, vol. 5702, pp. 525–532. Springer, Heidelberg (2009)Google Scholar
  11. 11.
    Ozdemir, D., Akarun, L.: A fuzzy algorithm for color quantization of images. Pattern Recognition 35, 1785–1791 (2002)CrossRefzbMATHGoogle Scholar
  12. 12.
    Shorter, N., Kasparis, T.: Fuzzy ART for Relatively Fast Unsupervised Image Color Quantization. In: Proc. of 19th Int. Conf. on Pattern Recognition. IEEE CS Press, Los Alamitos (2008) ISBN/ISSN: 978-1-4244-2175-6Google Scholar
  13. 13.
    Papamarkos, N., Atsalakis, A.E., Strouthopoulos, C.P.: Adaptive color reduction. IEEE Transactions Systems, Man, and Cybernetics 32(1), 44–56 (2002)CrossRefzbMATHGoogle Scholar
  14. 14.
    Atsalakis, A., Papamarkos, N.: Color reduction and estimation of the number of dominant colors by using a self-growing and self-organized neural gas. Engineering Applications of Artificial Intelligence 19, 769–786 (2006)CrossRefGoogle Scholar
  15. 15.
    Robinson, J.A.: Adaptive Prediction Trees for Image Compression. IEEE Transactions on Image Processing 15(8), 2131–2145 (2006)CrossRefGoogle Scholar
  16. 16.
    Arcelli, C., Ramella, G.: Finding contour-based abstractions of planar patterns. Pattern Recognition 26(10), 1563–1577 (1993)CrossRefGoogle Scholar
  17. 17.
  18. 18.
  19. 19.
  20. 20.
    Salomon, D.: Data Compression: The Complete Reference. Springer, London (2007)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Giuliana Ramella
    • 1
  • Gabriella Sanniti di Baja
    • 1
  1. 1.Istituto di Cibernetica “E.Caianiello”, CNRPozzuoliItaly

Personalised recommendations