Advertisement

Assessing the Role of Spatial Relations for the Object Recognition Task

  • Annette Morales-González
  • Edel García-Reyes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6419)

Abstract

It has been proved that spatial relations among objects and object’s parts play a fundamental role in the human perception and understanding of images, thus becoming very relevant in the computational fields of object recognition and content-based image retrieval. In this work we propose a spatial descriptor to represent topological and orientation/directional relationships, which are obtained by means of combinatorial pyramids. A combination of visual and spatial features is performed to improve the object recognition task. We ran an experiment to evaluate the expressiveness of this representation and it has shown promising results. It was performed on the benchmark ETH-80 Image Set database and we compare our approach with a state-of-the-art method recently published.

Keywords

object recognition spatial relations topological relations 

References

  1. 1.
    Guting, R.H., Iv, P.I., Hagen, F.: An introduction to spatial database systems. VLDB Journal 3, 357–399 (1994)CrossRefGoogle Scholar
  2. 2.
    Skiadopoulos, S., Koubarakis, M.: Composing cardinal direction relations. Artif. Intell. 152(2), 143–171 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Punitha, P., Guru, D.S.: An effective and efficient exact match retrieval scheme for symbolic image database systems based on spatial reasoning: A logarithmic search time approach. IEEE Trans. on Knowl. and Data Eng. 18(10), 1368–1381 (2006)CrossRefGoogle Scholar
  4. 4.
    Hsieh, J.-W., Grimson, W.E.L.: Spatial template extraction for image retrieval by region matching. IEEE Transactions on Image Processing 12(11), 1404–1415 (2003)CrossRefGoogle Scholar
  5. 5.
    Lin, P.L., Tan, W.H.: An efficient method for the retrieval of objects by topological relations in spatial database systems. Inf. Process. Manage. 39(4), 543–559 (2003)CrossRefzbMATHGoogle Scholar
  6. 6.
    Hodé, Y., Deruyver, A.: Qualitative spatial relationships for image interpretation by using semantic graph. In: Escolano, F., Vento, M. (eds.) GbRPR. LNCS, vol. 4538, pp. 240–250. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Tsapatsoulis, N., Petridis, S.: Classifying images from athletics based on spatial relations. In: International Workshop on Semantic Media Adaptation and Personalization, pp. 92–97 (2007)Google Scholar
  8. 8.
    Hernández-Gracidas, C., Sucar, L.E.: Markov random fields and spatial information to improve automatic image annotation. In: Mery, D., Rueda, L. (eds.) PSIVT 2007. LNCS, vol. 4872, pp. 879–892. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Brun, L., Kropatsch, W.: Contains and inside relationships within combinatorial pyramids. Pattern Recogn. 39(4), 515–526 (2006)CrossRefzbMATHGoogle Scholar
  10. 10.
    Brun, L., Kropatsch, W.: Introduction to combinatorial pyramids, pp. 108–128 (2001)Google Scholar
  11. 11.
    Illetschko, T., Ion, A., Haxhimusa, Y., Kropatsch, W.G.: Effective programming of combinatorial maps using coma - a c++ framework for combinatorial maps. Technical Report PRIP-TR-106, PRIP, TU Wien (2006)Google Scholar
  12. 12.
    Pietikainen, M., Ojala, T., Harwood, D.: A comparative study of texture measures with classification based on featured distribution. Pattern Recognition 29(1), 51–59 (1996)CrossRefGoogle Scholar
  13. 13.
    Egenhofer, M.J., Sharma, J., Mark, D.M.: A critical comparison of the 4-intersection and 9-intersection models for spatial relations: Formal analysis. Autocarto 11, 1–11 (1993)Google Scholar
  14. 14.
    Sokal, R.R., Michener, C.: A statistical method for evaluating systematic relationships. University of Kansas Science Bulletin 38, 1409–1438 (1958)Google Scholar
  15. 15.
    Iglesias-Ham, M., Bazán-Pereira, Y., García-Reyes, E.B.: A multiple substructure matching algorithm for fingerprint verification. In: Rueda, L., Mery, D., Kittler, J. (eds.) CIARP 2007. LNCS, vol. 4756, pp. 172–181. Springer, Heidelberg (2007)Google Scholar
  16. 16.
    Leibe, B., Schiele, B.: Analyzing appearance and contour based methods for object categorization. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2003), pp. 409–415 (2003)Google Scholar
  17. 17.
    Nomiya, H., Uehara, K.: Data Mining and Knowledge Discovery in Real Life Applications. IN-TECH, ch. 9, pp. 157–166 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Annette Morales-González
    • 1
  • Edel García-Reyes
    • 1
  1. 1.Advanced Technologies Application CenterPlayaCuba

Personalised recommendations