Exploiting Contextual Information for Image Re-ranking

  • Daniel Carlos Guimarães Pedronette
  • Ricardo da S. Torres
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6419)


This paper presents a novel re-ranking approach based on contextual information used to improve the effectiveness of Content-Based Image Retrieval (CBIR) tasks. In our approach, image processing techniques are applied to ranked lists defined by CBIR descriptors. Conducted experiments involving shape, color, and texture descriptors demonstrate the effectiveness of our method.


Contextual Information Image Retrieval Image Processing Technique Shape Descriptor Mean Average Precision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Arica, N., Vural, F.T.Y.: Bas: a perceptual shape descriptor based on the beam angle statistics. Pattern Recogn. Lett. 24(9-10), 1627–1639 (2003)CrossRefzbMATHGoogle Scholar
  2. 2.
    Brodatz, P.: Textures: A Photographic Album for Artists and Designers. Dover, New York (1966)Google Scholar
  3. 3.
    Huang, J., Kumar, S.R., Mitra, M., Zhu, W.J., Zabih, R.: Image indexing using color correlograms. In: CVPR 1997, p. 762 (1997)Google Scholar
  4. 4.
    Jégou, H., Harzallah, H., Schmid, C.: A contextual dissimilarity measure for accurate and efficient image search. In: CVPR, pp. 1–8 (2007)Google Scholar
  5. 5.
    Peter, K.: Donoser Michael, B.H.: Beyond pairwise shape similarity analysis. In: Asian Conference on Computer Vision (ACCV), pp. 655–666 (2009)Google Scholar
  6. 6.
    Kovalev, V., Volmer, S.: Color co-occurence descriptors for querying-by-example. In: MMM 1998, p. 32 (1998)Google Scholar
  7. 7.
    Ling, H., Jacobs, D.W.: Shape classification using the inner-distance. PAMI 29(2), 286–299 (2007)CrossRefGoogle Scholar
  8. 8.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. PAMI 24(7), 971–987 (2002)CrossRefzbMATHGoogle Scholar
  9. 9.
    Pedronette, D.C.G., da Torres, R.S.: Shape retrieval using contour features and distance optmization. In: VISAPP. vol. 1, pp. 197 – 202 (2010)Google Scholar
  10. 10.
    Perronnin, F., Liu, Y., Renders, J.M.: A family of contextual measures of similarity between distributions with application to image retrieval. In: CVPR, pp. 2358–2365 (2009)Google Scholar
  11. 11.
    da, S., Torres, R., Falcao, A.X.: Contour Salience Descriptors for Effective Image Retrieval and Analysis. Image and Vision Computing 25(1), 3–13 (2007)CrossRefGoogle Scholar
  12. 12.
    Schwander, O., Nielsen, F.: Reranking with contextual dissimilarity measures from representational bregmanl k-means. In: VISAPP, vol. 1, pp. 118–122 (2010)Google Scholar
  13. 13.
    Stehling, R.O., Nascimento, M.A., Falcao, A.X.: A compact and efficient image retrieval approach based on border/interior pixel classification. In: CIKM 2002, pp. 102–109 (2002)Google Scholar
  14. 14.
    Swain, M.J., Ballard, D.H.: Color indexing. IJCV 7(1), 11–32 (1991)CrossRefGoogle Scholar
  15. 15.
    Tao, B., Dickinson, B.W.: Texture recognition and image retrieval using gradient indexing. JVCIR 11(3), 327–342 (2000)Google Scholar
  16. 16.
    van de Weijer, J., Schmid, C.: Coloring local feature extraction. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part II. LNCS, vol. 3952, pp. 334–348. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Yang, X., Bai, X., Latecki, L.J., Tu, Z.: Improving shape retrieval by learning graph transduction. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 788–801. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Yang, X., Koknar-Tezel, S., Latecki, L.J.: Locally constrained diffusion process on locally densified distance spaces with applications to shape retrieval. In: CVPR, pp. 357–364 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Daniel Carlos Guimarães Pedronette
    • 1
  • Ricardo da S. Torres
    • 1
  1. 1.RECOD Lab - Institute of ComputingUniversity of CampinasCampinas/SPBrazil

Personalised recommendations