Advertisement

Aerosol Optical Thickness Retrieval from Satellite Observation Using Support Vector Regression

  • Thi Nhat Thanh Nguyen
  • Simone Mantovani
  • Piero Campalani
  • Mario Cavicchi
  • Maurizio Bottoni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6419)

Abstract

Processing of data recorded by the MODIS sensors on board the Terra and Aqua satellites has provided AOT maps that in some cases show low correlations with ground-based data recorded by the AERONET. Application of SVR techniques to MODIS data is a promising, though yet poorly explored, method of enhancing the correlations between satellite data and ground measurements. The article explains how satellite data recorded over three years on central Europe are correlated in space and time with ground based data and then shows results of the application of the SVR technique which somewhat improves previously computed correlations. Hints about future work in testing different SVR variants and methodologies are inferred from the analysis of the results thus far obtained.

Keywords

MODIS Aerosol Optical Thickness Earth Observation Remote Sensing Support Vector Regression 

References

  1. 1.
    Remer, L.A., Tanré, D., Kaufman, Y.J.: Algorithm for Remote Sensing of Tropospheric Aerosol From MODIS: Collection 5. MODIS ATBD (2004)Google Scholar
  2. 2.
    Kaufman, Y.J., Tanre, D.: Algorithm for Remote Sensing of Tropospheric Aerosol from MODIS. In: MODIS ATBD (1997)Google Scholar
  3. 3.
    Abdou, W.A., Diner, D.J., Martonchik, J.V., Bruegge, C.J., Kahn, R.A., Gaitley, B.J., Crean, K.A.: Comparison of coincident Multiangle Imaging Spectroradiometer and Moderate Resolution Imaging Spectroradiometer aerosol optical depths over land and ocean scenes containing Aerosol Robotic Network sites. Journal of Geophysical research 110(D10S07), 11967–11976 (2005)Google Scholar
  4. 4.
    Nguyen, T.N.T., Mantovani, S., Bottoni, M.: Estimation of Aerosol and Air Quality Fields with PM MAPPER – An Optical Multispectral Data Processing Package. In: ISPRS Commission VII Symposium, Vienna, Austria (2010)Google Scholar
  5. 5.
    Ma, Y., Gong, W., Zhu, Z., Zhang, L., Li, P.: Cloud Amount and Aerosol Characteristic Research in the Atmosphere over Hubei Province, China, pp. III-631–III-634. IEEE/IGARSS (2009)Google Scholar
  6. 6.
    Ramakrishnan, R., Schauer, J.J., Chen, L., Huang, Z., Shafer, M.M., Gross, D.S., Musicant, D.R.: The EDAM project: Mining atmospheric aerosol datasets: Research Articles. International Journal of Intelligent Systems 20(7), 759–787 (2005)CrossRefGoogle Scholar
  7. 7.
    Chen, Q., Shao, Y.: The Application of Improved BP Neural Network Algorithm in Urban Air Quality Prediction: Evidence from China. In: 2008 IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application, pp. 160–163 (2008)Google Scholar
  8. 8.
    Lu, W., Wang, W., Leung, A.Y.T., Lo, S.M., Yuen, R.K.K., Xu, Z., Fan, H.: Air Pollutant Parameter Forecasting Using Support Vector Machine. In: Proceedings of the 2002 International Joint Conference on Neural Network, pp. 630–635 (2002)Google Scholar
  9. 9.
    Siwek, K., Osowski, S., Garanty, K., Sowinski, M.: Ensemble of Neural Predictors for Forecasting the Atmospheric Pollution. In: Proceedings of IEEE International Joint Conference on Neural Network, pp. 643–648 (2008)Google Scholar
  10. 10.
    Osowski, S., Garanty, K.: Wavelets and Support Vector Machine for Forecasting the Meteorological Pollution. In: Proceedings of the 7th Nordic Signal Processing Symposium 2006, pp. 158–161 (2006)Google Scholar
  11. 11.
    Okada, Y., Mukai, S., Sano, I.: Neural Network Approach for Aerosol Retrieval. IEEE/IGARSS 4, 1716–1718 (2001)Google Scholar
  12. 12.
    Han, B., Vucetic, S., Braverman, A., Obradovic, Z.: A statistical complement to deterministic algorithms for the retrieval of aerosol optical thickness from radiance data. Engineering Applications of Artificial Intelligence 19, 787–795 (2006)CrossRefGoogle Scholar
  13. 13.
    Xu, Q., Obradovic, Z., Han, B., Li, Y., Braverman, A., Vucetic, S.: Improving Aerosol Retrieval Accuracy by Integrating AERONET, MISR and MODIS Data. In: 8th Intenational Conference on Information Fusion, Philadelphia, PA (2005)Google Scholar
  14. 14.
    Vucetic, S., Han, B., Mi, W., Li, Z., Obradovic, Z.: A Data-Mining Approach for the Validation of Aerosol Retrievals. IEEE Geoscience and Remote Sensing Letter 5(1), 113–117 (2008)CrossRefGoogle Scholar
  15. 15.
    Lary, D.J., Remer, L.A., MacNeill, D., Roscoe, B., Paradise, S.: Machine Learning Bias Correction of MODIS Aerosol Optical Depth. IEEE Geoscience and Remote Sensing Letters 6(4), 694–698 (2009)CrossRefGoogle Scholar
  16. 16.
    Vapnik, V.N.: The nature of statistical learning theory. Springer, New York (1995)CrossRefzbMATHGoogle Scholar
  17. 17.
    Ichoku, C., Chu, D.A., Mattoo, S., Kaufman, Y.J., Remer, L.A., Tanre, D.T., Slutsker, I., Holben, B.N.: A spatio-temporal approach for global validation and analysis of MODIS aerosol products. Geophysical Research Letter 29(12), 1–4 (2002)CrossRefGoogle Scholar
  18. 18.
    Wang, Z., Radosavljevic, V., Han, B., Obradovic, Z., Vucetic, S.: Aerosol Optical Depth Prediction from Satellite Observations by Multiple Instance Regression. In: SIAM Conference on Data Mining, Atlanta, GA (2008)Google Scholar
  19. 19.
    AERONET - AErosol Robotic Network, http://aeronet.gsfc.nasa.gov/
  20. 20.
    LIBSVM: A Library for Support Vector Machines, http://www.csie.ntu.edu.tw/~cjlin/libsvm/
  21. 21.
    MEEO: Meteorological Environmental Earth Observation, http://www.meeo.it/

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Thi Nhat Thanh Nguyen
    • 1
    • 2
  • Simone Mantovani
    • 2
    • 3
  • Piero Campalani
    • 1
    • 2
  • Mario Cavicchi
    • 2
  • Maurizio Bottoni
    • 3
  1. 1.University of FerraraFerraraItaly
  2. 2.MEEO S.r.lFerraraItaly
  3. 3.SISTEMA GmbHViennaAustria

Personalised recommendations