Improving the Accuracy of the Optimum-Path Forest Supervised Classifier for Large Datasets

  • César Castelo-Fernández
  • Pedro J. de Rezende
  • Alexandre X. Falcão
  • João Paulo Papa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6419)


In this work, a new approach for supervised pattern recognition is presented which improves the learning algorithm of the Optimum-Path Forest classifier (OPF), centered on detection and elimination of outliers in the training set. Identification of outliers is based on a penalty computed for each sample in the training set from the corresponding number of imputable false positive and false negative classification of samples. This approach enhances the accuracy of OPF while still gaining in classification time, at the expense of a slight increase in training time.


Optimum-Path Forest Classifier Outlier Detection Supervised Classification Learning Algorithm 


  1. 1.
    MPEG-7: The generic multimedia content description standard, part 1. IEEE MultiMedia 9, 78–87 (2002)Google Scholar
  2. 2.
    Arica, N., Vural, F.T.Y.: BAS: a perceptual shape descriptor based on the beam angle statistics. Pattern Recognition Letters 24(9-10), 1627–1639 (2003)CrossRefzbMATHGoogle Scholar
  3. 3.
    Asuncion, A., Newman, D.J.: UCI machine learning repository (2007)Google Scholar
  4. 4.
    Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the 5th Workshop on Computational Learning Theory, pp. 144–152. ACM Press, New York (1992)Google Scholar
  5. 5.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-Interscience, Hoboken (2000)zbMATHGoogle Scholar
  6. 6.
    Falcão, A.X., Stolfi, J., Lotufo, R.A.: The image foresting transform: Theory, algorithms, and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(1), 19–29 (2004)CrossRefGoogle Scholar
  7. 7.
    Papa, J.P., Cappabianco, F.A.M., Falcão, A.X.: Optimizing optimum-path forest classification for huge datasets. In: Proceedings of The 20th International Conference on Pattern Recognition (to appear, 2010)Google Scholar
  8. 8.
    Papa, J.P., Falcão, A.X., Suzuki, C.T.N.: Supervised pattern classification based on optimum-path forest. International Journal of Imaging Systems and Technology 19, 120–131 (2009)CrossRefGoogle Scholar
  9. 9.
    Vapnik, V.N.: An overview of statistical learning theory. IEEE Transactions on Neural Networks 10(5), 988–999 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • César Castelo-Fernández
    • 1
  • Pedro J. de Rezende
    • 1
  • Alexandre X. Falcão
    • 1
  • João Paulo Papa
    • 2
  1. 1.Institute of ComputingState University of Campinas- UNICAMPCampinasBrazil
  2. 2.Department of ComputingSão Paulo State University-UNESPBaurúBrazil

Personalised recommendations