Illumination Invariant Face Image Representation Using Quaternions

  • Dayron Rizo-Rodríguez
  • Heydi Méndez-Vázquez
  • Edel García-Reyes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6419)


Variations in illumination is a well-known affecting factor of face recognition system performance. Feature extraction is one of the principal steps on a face recognition framework, where it is possible to alleviate the illumination effects on face images. The aim of this work is to study the illumination invariant properties of a hypercomplex image representation. A quaternion description from the image is built using second order derivatives decomposition. This representation is transformed to quaternion frequency domain in order to analyze its illumination invariant and discriminative properties, which are compared against the ones of the complex frequency domain representation obtained by using first order derivative decomposition. The hypercomplex quaternion representation was found to be more discriminative than the complex one, when comparing on face recognition with images under varying lighting conditions.


Face Recognition Face Image False Acceptance Rate False Rejection Rate Discriminative Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Chen, H., Belhumeur, P., Jacobs, D.: In search of illumination invariants. In: IEEE International Conference on Computer Vision and Pattern Recognition (2000)Google Scholar
  2. 2.
    Belhumeur, P., Pentland, J., Kriegman, D.: Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Trans. Pattern Anal. Machine Intell. 19, 711–720 (1997)CrossRefGoogle Scholar
  3. 3.
    Hafed, Z.M., Levine, M.D.: Face recognition using the discrete cosine transform. Int. J. Comput. Vision 43(3), 167–188 (2001)CrossRefzbMATHGoogle Scholar
  4. 4.
    Savvides, M., Vijaya Kumar, B., Khosla, P.: Corefaces-robust shift invariant pca based correlation filter for illumination tolerant face recognition. In: Proc. IEEE CVPR 2004 (2004)Google Scholar
  5. 5.
    Qing, L., Shan, S., Chen, X., Gao, W.: Face recognition under varying lighting based on the probabilistic model of gabor phase. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  6. 6.
    Pujol, A.: Contributions to Shape and Texture Face Similarity Measurement. PhD thesis, Universitat Autónoma de Barcelona (2001)Google Scholar
  7. 7.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Vijayakumar, B., Savvides, K., Venkataramani, K., Xie, C.: Spatial frequency domain image processing for biometric recognition. In: IEEE International Conference on Image Processing, pp. 53–56 (2002)Google Scholar
  9. 9.
    Garea, E., Kittler, J., Messer, K., Mendez, H.: An illumination insensitive representation for face verification in the frequency domain. In: ICPR 2006, pp. 215–218. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  10. 10.
    Chunyan, X., Savvides, M., Vijayakumar, B.: Quaternion correlation filters for face recognition in wavelet domain. In: Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (2005)Google Scholar
  11. 11.
    Sim, T., Baker, S., Bsat, M.: The cmu pose, illumination, and expression (pie) database of human faces. Technical report (2007)Google Scholar
  12. 12.
    Hamilton, W.: 24. In: Elements of Quaternions. Longmans, Green (1866)Google Scholar
  13. 13.
    Sangwine, S., Le Bihan, N.: Quaternion polar representation with a complex modulus and complex argument inspired by the cayley-dickson form. In: Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (2005)Google Scholar
  14. 14.
    Moxey, C., Sangwine, S., Ell, T.: Hypercomplex correlation techniques for vector images. IEEE Transaction on Signal Processing 51, 1941–1953 (2003)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Denis, P.: Quaternions et Algèbres Géométriques, de nouveaux outils pour les images numériques couleur. PhD thesis, Université de Poitiers (2006)Google Scholar
  16. 16.
    Mahecha, V.: Aplicación de los números hipercomplejos o cuaterniones en imágenes de color. Ingeniería y desarrollo (023), 72–83 (2008)Google Scholar
  17. 17.
    Bayro, E.: 6. In: Geometric Computing for Perception Action Systems, pp. 115–136. Springer, New York (2001)Google Scholar
  18. 18.
    Messer, K., Matas, J., Kittler, J., Jonsson, K.: Xm2vtsdb: The extended m2vts database. In: Second International Conference on Audio and Video-based Biometric Person Authentication, pp. 72–77 (1999)Google Scholar
  19. 19.
    Lee, K.C., Ho, J., Kriegman, D.J.: Acquiring linear subspaces for face recognition under variable lighting. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(5), 684–698 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Dayron Rizo-Rodríguez
    • 1
  • Heydi Méndez-Vázquez
    • 1
  • Edel García-Reyes
    • 1
  1. 1.Advanced Technologies Application CenterPlayaCuba

Personalised recommendations