Advertisement

On Combining Local DCT with Preprocessing Sequence for Face Recognition under Varying Lighting Conditions

  • Heydi Méndez-Vázquez
  • Josef Kittler
  • Chi-Ho Chan
  • Edel García-Reyes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6419)

Abstract

Face recognition under varying lighting conditions remains an unsolved problem. In this work, a new photometric normalisation method based on local Discrete Cosine Transform in the logarithmic domain is proposed. The method is experimentally evaluated and compared with other algorithms, achieving a very good performance with a total error rate very similar to that produced by the preprocessing sequence, which is the best performing state of the art photometric normalisation algorithm. An in-depth analysis of both methods revealed notable differences in their behaviour. This diversity is exploited in a multiple classifier fusion framework to achieve further performance improvement.

Keywords

Face Recognition Face Image Local Binary Pattern Illumination Variation False Acceptance Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Phillips, J., Scruggs, T., O’toole, A., Flynn, P., Bowyer, K., Schott, C., Sharpe, M.: FRVT 2006 and ICE 2006 Large-scale results. Technical report, National Institute of Standards and Technology (March 2007)Google Scholar
  2. 2.
    Zou, X., Kittler, J., Messer, K.: Illumination invariant face recognition: A survey. In: BTAS 2007 (September 2007)Google Scholar
  3. 3.
    Du, B., Shan, S., Qing, L., Gao, W.: Empirical comparisons of several preprocessing methods for illumination insensitive face recognition. In: ICASSP 2005, vol. 2, pp. 981–984 (2005)Google Scholar
  4. 4.
    Short, J., Kittler, J., Messer, K.: A comparison of photometric normalisation algorithms for face verification. In: AFGR 2004, pp. 254–259 (2004)Google Scholar
  5. 5.
    Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. In: Zhou, S.K., Zhao, W., Tang, X., Gong, S. (eds.) AMFG 2007. LNCS, vol. 4778, pp. 168–182. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Chen, W., Er, M., Wu, S.: Illumination compensation and normalization for robust face recognition using discrete cosine transform in logarithm domain. IEEE Trans. on Systems, Man and Cybernetics 36(2), 458–466 (2006)CrossRefGoogle Scholar
  7. 7.
    Abbas, A., Khalil, M., AbdelHay, S., Fahmy, H.: Illumination invariant face recognition in logarithm discrete cosine transform domain. In: ICIP, pp. 4157–4160 (2009)Google Scholar
  8. 8.
    Liau, H., Isa, D.: New illumination compensation method for face recognition. Int. J. of Computer and Network Security 2(3), 5–12 (2010)Google Scholar
  9. 9.
    Mendez-Vazquez, H., Garcia-Reyes, E., Condes-Molleda, Y.: A new combination of local appearance based methods for face recognition under varying lighting conditions. In: Ruiz-Shulcloper, J., Kropatsch, W.G. (eds.) CIARP 2008. LNCS, vol. 5197, pp. 535–542. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Villegas, M., Paredes, R.: Comparison of illumination normalization methods for face recognition. In: Third COST 275 Workshop-Biometric on the Internet, pp. 27–30 (2005)Google Scholar
  11. 11.
    Ahonen, T., Hadid, A., Pietikãinen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Messer, K., Matas, J., Kittler, J., Jonsson, K.: Xm2vtsdb: The extended m2vts database. In: Second International Conference on Audio and Video-based Biometric Person Authentication, pp. 72–77 (1999)Google Scholar
  13. 13.
    Chan, C., Kittler, J., Messer, K.: Multi-scale local binary pattern histograms for face recognition. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 809–818. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Gross, R., Brajovic, V.: An image preprocessing algorithm for illumination invariant face recognition. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 10–18. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Chen, T., Yin, W., Zhou, X., Comaniciu, D., Huang, T.: Illumination normalization for face recognition and uneven background correction using total variation based image models. In: CVPR 2005, vol. 2, pp. 532–539 (2005)Google Scholar
  16. 16.
    Webb, A.R.: 8.3. In: Statistical Pattern Recognition, 2nd edn., pp. 266–271. John Wiley and Sons Ltd., Chichester (2002)CrossRefGoogle Scholar
  17. 17.
    Kittler, J., Hatef, M., Duin, R., Matas, J.: On combining classifiers. IEEE TPAMI 20, 226–239 (1998)CrossRefGoogle Scholar
  18. 18.
    Heusch, G., Rodriguez, Y., Marcel, S.: Local binary patterns as an image preprocessing for face authentication. In: FGR 2006: Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition, pp. 9–14 (2006)Google Scholar
  19. 19.
    Messer, K., Kittler, J., Short, J., Heusch, G., Cardinaux, F., Marcel, S., Rodriguez, Y., Shan, S., Su, Y., Gaod, W., Chen, X.: Performance characterisation of face recognition algorithms and their sensitivity to severe illumination changes. In: Zhang, D., Jain, A.K. (eds.) ICB 2006. LNCS, vol. 3832, pp. 1–11. Springer, Heidelberg (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Heydi Méndez-Vázquez
    • 1
  • Josef Kittler
    • 2
  • Chi-Ho Chan
    • 2
  • Edel García-Reyes
    • 1
  1. 1.Advanced Technologies Application CenterPlayaCuba
  2. 2.Center for Vision, Speech and Signal ProcessingUniversity of SurreyGuildfordUK

Personalised recommendations