Parameter Estimation for Ridge Detection in Images with Thin Structures

  • Talita Perciano
  • Roberto HirataJr.
  • Lúcio André de Castro Jorge
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6419)

Abstract

This paper presents an analysis of four ridge detectors in images with thin structures: plant root images and retinal images. Two proposed detectors and two detectors from the literature are used. We estimate the optimal parameters for each detector for the two applications using a ROC curve similar approach. Simulated images of plant roots and retinal images are used. The optimal parameters are estimated and then used in real images. We conclude that the proposed detector based on mathematical morphology and the one based on the steerable filter are the best for both set of images.

Keywords

Ridge detection parameter estimation 

References

  1. 1.
    Berlemont, S., Olivo Marin, J.C.: Combining local filtering and multiscale analysis for edge, ridge, and curvilinear objects detection. IEEE Transactions on Image Processing 19(1), 74–84 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bowyer, K., Kranenburg, C., Dougherty, S.: Edge detector evaluation using empirical roc curves. Comput. Vis. Image Underst. 84(1), 77–103 (2001)CrossRefMATHGoogle Scholar
  3. 3.
    Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)CrossRefGoogle Scholar
  4. 4.
    Dima, A., Scholz, M., Obermayer, K.: Automatic segmentation and skeletonization of neurons from confocal microscopy images based on the 3-d wavelet transform. IEEE Transactions on Image Processing 11(4), 790–801 (2002)CrossRefGoogle Scholar
  5. 5.
    Dougherty, E.R., Lotufo, R.A.: Hands-on Morphological Image Processing. SPIE Publications, Bellingham (2003)CrossRefGoogle Scholar
  6. 6.
    Frangi, A.F.: Three-dimensional Model-based Analysis of Vascular and Cardiac Images. Ph.D. thesis, Utrecht University, The Netherlands (2001)Google Scholar
  7. 7.
    Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering, p. 130+ (1998), http://www.springerlink.com/content/84rpbx096y455vtv
  8. 8.
    Gauch, J.M., Pizer, S.M.: Multiresolution analysis of ridges and valleys in grey-scale images. IEEE Trans. Pattern Anal. Mach. Intell. 15(6), 635–646 (1993)CrossRefGoogle Scholar
  9. 9.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice-Hall, Englewood Cliffs (2008)Google Scholar
  10. 10.
    Hou, J., Bamberger, R.: Orientation selective operators for ridge, valley, edge, and line detection in imagery. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2, pp. 25–28 (1994)Google Scholar
  11. 11.
    Jacob, M., Unser, M.: Design of steerable filters for feature detection using canny-like criteria. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 1007–1019 (2004)CrossRefGoogle Scholar
  12. 12.
    Lindeberg, T.: Edge detection and ridge detection with automatic scale selection. International Journal of Computer Vision 30, 465–470 (1996)Google Scholar
  13. 13.
    Lopez, A.M., Lumbreras, F., Serrat, J., Villanueva, J.J.: Evaluation of methods for ridge and valley detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(4), 327–335 (1999)CrossRefGoogle Scholar
  14. 14.
    Neto, L.M., Vaz, C.M.P., Crestana, S.: Instrumentação avançada em ciência do solo, 1st edn. EMBRAPA (2007)Google Scholar
  15. 15.
    Perciano, T., Hirata, R., Cesar, R.M.: An image simulator of soil profiles with plant roots for image segmentation. In: Pedrini, H., ao Marques de Carvalho, J., Lewiner, T. (eds.) Workshops of Sibgrapi 2009 - Posters, SBC, Rio de Janeiro, RJ (2009), http://www.matmidia.mat.puc-rio.br/Sibgrapi2009 Google Scholar
  16. 16.
    Soares, J.V.B., Leandro, J.J.G., Cesar Jr., R.M., Jelinek, H.F., Cree, M.J.: Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Transactions on Medical Imaging 25, 1214–1222 (2006)CrossRefGoogle Scholar
  17. 17.
    Staal, J., Abramoff, M., Niemeijer, M., Viergever, M., van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Transactions on Medical Imaging 23(4), 501–509 (2004)CrossRefGoogle Scholar
  18. 18.
    Tupin, F., Houshmand, B., Dactu, M.: Road detection in dense urban areas using SAR imagery anf the usefulness of multiple views. IEEE Trans. Geosci. Remote Sensing 40(11), 2405–2414 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Talita Perciano
    • 1
  • Roberto HirataJr.
    • 1
  • Lúcio André de Castro Jorge
    • 2
  1. 1.Instituto de Matemática e EstatísticaUniversidade de São PauloBrazil
  2. 2.CNPDIAEmbrapa Instrumentação AgropecuáriaSão CarlosBrazil

Personalised recommendations