A Complex Network-Based Approach for Texture Analysis

  • André Ricardo Backes
  • Dalcimar Casanova
  • Odemir Martinez Bruno
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6419)


In this paper, we propose a novel texture analysis method using the complex network theory. It was investigated how a texture image can be effectively represented, characterized and analyzed in terms of a complex network. The propose uses degree measurements in a dynamic evolution network to compose a set of feasible shape descriptors. Results show that the method is very robust and it presents a very excellent texture discrimination for all considered classes.


Complex Network Texture Analysis Texture Image Gabor Filter Descriptor Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Antiqueira, L., Nunes, M.G.V., Oliveira, O.N., Costa, L.F.: Strong correlations between text quality and complex networks features. Physica A 373(1), 811–820 (2007)CrossRefGoogle Scholar
  2. 2.
    Azencott, R., Wang, J.P., Younes, L.: Texture classification using windowed fourier filters. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(2), 148–153 (1997)CrossRefGoogle Scholar
  3. 3.
    Backes, A.R., Bruno, O.M.: Shape classification using complex network and multi-scale fractal dimension. Pattern Recognition Letters 31, 44–51 (2010)CrossRefGoogle Scholar
  4. 4.
    Backes, A.R., Casanova, D., Bruno, O.M.: A complex network-based approach for boundary shape analysis. Pattern Recognition 42(1), 54–67 (2009)CrossRefzbMATHGoogle Scholar
  5. 5.
    Brodatz, P.: Textures: A photographic album for artists and designers. Dover Publications, New York (1966), Google Scholar
  6. 6.
    Chalumeau, T., Costa, L.F., Laligant, O., Meriaudeau, F.: Texture discrimination using hierarchical complex networks. In: Proceedings of the Second International Conference on Signal-Image Technology and Internet-Based Systems, pp. 543–550 (2006)Google Scholar
  7. 7.
    Chalumeau, T., da Costa, L.F., Laligant, O., Meriaudeau, F.: Complex networks: application for texture characterization and classification. Electronic Letters on Computer Vision and Image Analysis 7(3), 93–100 (2008)zbMATHGoogle Scholar
  8. 8.
    Chalumeau, T., da Costa, L.F., Laligant, O., Meriaudeau, F.: Texture discrimination using hierarchical complex networks. Multimedia Systems and Applications 31(2), 95–102 (2008)zbMATHGoogle Scholar
  9. 9.
    Costa, L.F.: Complex networks, simple vision (2004),
  10. 10.
    Costa, L.F., Rodrigues, F.A., Travieso, G., Boas, P.R.V.: Characterization of complex networks: A survey of measurements. Advances in Physics 56(1), 167–242 (2007)CrossRefGoogle Scholar
  11. 11.
    Haralick, R.M.: Statistical and structural approaches to texture. Proceedings of IEEE 67(5), 786–804 (1979)CrossRefGoogle Scholar
  12. 12.
    Julesz, B.: Experiments in the visual perception of texture. Scientific American 232(4), 34–43 (1975)CrossRefGoogle Scholar
  13. 13.
    Kasparis, T., Charalampidis, D., Georgiopoulos, M., Rolland, J.P.: Segmentation of textured images based on fractals and image filtering. Pattern Recognition 34(10), 1963–1973 (2001)CrossRefzbMATHGoogle Scholar
  14. 14.
    Manjunath, B.S., Ma, W.Y.: Texture features for browsing and retrieval of image data. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(8), 837–842 (1996)CrossRefGoogle Scholar
  15. 15.
    Tuceryan, M., Jain, A.K.: Texture analysis. In: Handbook of Pattern Recognition and Computer Vision, pp. 235–276 (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • André Ricardo Backes
    • 1
  • Dalcimar Casanova
    • 2
  • Odemir Martinez Bruno
    • 2
  1. 1.Faculdade de ComputaçãoUniversidade Federal de UberlândiaUberlândiaBrasil
  2. 2.IFSC - Instituto de Física de São CarlosSão CarlosBrasil

Personalised recommendations