Advertisement

Vessel Centerline Tracking in CTA and MRA Images Using Hough Transform

  • Maysa M. G. Macedo
  • Choukri Mekkaoui
  • Marcel P. Jackowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6419)

Abstract

Vascular disease is characterized by any condition that affects the circulatory system. Recently, a demand for sophisticated software tools that can characterize the integrity and functional state of vascular networks from different vascular imaging modalities has appeared. Such tools face significant challenges such as: large datasets, similarity in intensity distributions of other organs and structures, and the presence of complex vessel geometry and branching patterns. Towards that goal, this paper presents a new approach to automatically track vascular networks from CTA and MRA images. Our methodology is based on the Hough transform to dynamically estimate the centerline and vessel diameter along the vessel trajectory. Furthermore, the vessel architecture and orientation is determined by the analysis of the Hessian matrix of the CTA or MRA intensity distribution. Results are shown using both synthetic vessel datasets and real human CTA and MRA images. The tracking algorithm yielded high reproducibility rates, robustness to different noise levels, associated with simplicity of execution, which demonstrates the feasibility of our approach.

Keywords

lumen segmentation vessel tracking Hough transform angiographic images CTA MRA 

References

  1. 1.
    American Heart Association: Heart disease and stroke statistics - 2010 update. American Heart Association - Learn and Live (2010)Google Scholar
  2. 2.
    Zhuang, Z.W., Gao, L., Murakami, M., Pearlman, J.D., Sackett, T.J., Simons, M., Muinck, E.D.: Arteriogenesis: Non-invasive quantification with multi-detector row ct angiography and three-dimensional volume rendering in rodents. Radiology 240, 698–707 (2006)CrossRefGoogle Scholar
  3. 3.
    Bankman, I., Hopkins, J.: Handbook of Medical Imaging. Elsevier, Amsterdam (2000)Google Scholar
  4. 4.
    Qian, X., Brennan, M.P., Dione, D.P., Dobrucki, W.L., Jackowski, M.P., Breuer, C.K., Sinusas, A.J., Papademetris, X.: A non-parametric vessel detection method for complex vascular structures. Medical Image Analysis 13, 49–61 (2009)CrossRefGoogle Scholar
  5. 5.
    Metz, C.T., Weustink, A.C., Mollet, N.R., van Walsum, T., Niessen, W.J.: Coronary centerline extraction from ct coronary angiography images using a minimum cost path approach. Medical Physics 36(12) (2009)Google Scholar
  6. 6.
    Wink, O., Niessen, W.J., Viergever, M.A.: Multiscale vessel tracking. IEEE Transaction on Medical Imaging 23(1) (2004)Google Scholar
  7. 7.
    McIntosh, F., Hamarneh, G.: Vessel crawlers: 3d physically-based deformable organisms for vasculature segmentation and analysis. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1084–1091 (2006)Google Scholar
  8. 8.
    Lesage, D., Angelini, E.D., Bloch, I., Funka-Lea, G.: A review of 3d vessel lumen segmentation techniques: Models, features and extraction scheme. Medical Image Analysis (2009)Google Scholar
  9. 9.
    Kirbas, C., Quek, F.: A review of vessel extraction techniques and algorithms. ACM Computing Surveys 36(2), 81–121 (2004)CrossRefGoogle Scholar
  10. 10.
    Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. 11.
    Manniesing, R., Viergever, A., Niessen, W.J.: Vessel enhancing diffusion. a scale space representation of vessel structures. Medical Image Analysis 10, 815–825 (2006)CrossRefGoogle Scholar
  12. 12.
    Alyward, S., Bullitt, E.: Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. IEEE Transaction on Medical Imaging 21, 61–75 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Maysa M. G. Macedo
    • 1
  • Choukri Mekkaoui
    • 2
  • Marcel P. Jackowski
    • 1
  1. 1.Department of Computer ScienceUniversity of São PauloBrazil
  2. 2.Harvard Medical SchoolBostonUSA

Personalised recommendations