A Quantitative Evaluation of Fixed-Pattern Noise Reduction Methods in Imaging Systems

  • Pablo Meza
  • César San Martin
  • Esteban Vera
  • Sergio Torres
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6419)


Fixed-pattern noise is a common feature in several uncalibrated imaging systems, and it typically appears as striping and grid-like nonuniformity artifacts in hyperspectral and infrared cameras. In this work, we present a quantitative and comparative analysis of fixed-pattern noise reduction, or calibrating techniques, by using several image quality indexes. A special emphasis is made in demonstrating the correspondence between the reference-free (blind) image quality indexes and the typical reference-based metrics, specially when using online calibration procedures where reference data is not available. We evaluate the performance of several classic scene-based calibrating algorithms applied to: multispectral images with simulated striping noise; and infrared image sequences with simulated nonuniformity. The results show that most of the tested reference-free indexes are useful indicators for tracking some of the real degradation of the calibrated or even uncalibrated imagery, but they are far from perfect to match an error or similarity measure if the clean or reference data is available.


Focal Plane Array Corrected Image Structural Similarity Index Measure Histogram Match Moment Match 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Chang-yan, C., Ji-xian, Z., Zheng-jun, L.: Study on Methods of Noise Reduction in a Stripped Image. Int. Arch. of P, RS, and SI Sciences 37, 213–216 (2008)Google Scholar
  2. 2.
    Chen, J., Shao, Y., Guo, H., Wang, W., Zhu, B.: Destriping CMODIS Data by Power Filtering. IEEE Trans. on Geoscience and Remote Sensing 41, 2119–2124 (2003)CrossRefGoogle Scholar
  3. 3.
    Gadallah, F., Csillag, F.: Destriping Multisensor Imagery with Moment Matching. International Journal of Remote Sensing 21, 2505–2511 (2000)CrossRefGoogle Scholar
  4. 4.
    Harris, J., Chiang, Y.: Nonuniformity correction using constant average statistics constraint: analog and digital implementation. In: Proc. of SPIE, vol. 3061, pp. 895–905 (1997)Google Scholar
  5. 5.
    Harris, J., Chiang, Y.: Nonuniformity correction of infrared image sequences using constant statistics constraint. IEEE Trans. on Image Proc. 8, 1148–1151 (1999)CrossRefGoogle Scholar
  6. 6.
    Hayat, M., Torres, S., Amstrong, E., Cain, S., Yasuda, B.: Statistical algorithm for nonuniformity correction in focal plane arrays. Applied Optics 38, 773–780 (1999)CrossRefGoogle Scholar
  7. 7.
    Liu, Z., Forsyth, D., Laganière, R.: A feature-based metric for the quantitative evaluation of pixel-level image fusion. C. Vision and Image Under. 109, 56–68 (2008)CrossRefGoogle Scholar
  8. 8.
    Munch, B., Trtik, P., Marone, F., Stampanoni, F.: Stripe and ring artifact removal with combined wavelet Fourier filtering. Optics Express 17, 8567–8591 (2009)CrossRefGoogle Scholar
  9. 9.
    Rakwatin, P., Takeuchi, W., Yasuoka, Y.: Stripe Noise Reduction in MODIS Data by Combining Histogram Matching With Facet Filter. IEEE Trans. on Geoscience and Remote Science 45(6), 1844–1856 (2007)CrossRefGoogle Scholar
  10. 10.
    San Martn, C., Torres, S., Pezoa, J.: An Effective Reference-Free Performance Metric for Non-uniformity Correction Algorithms in Infrared Imaging Systems. In: Proc. of the IEEE LEOS 20th A. M., pp. 576–577 (2007)Google Scholar
  11. 11.
    Schulz, M., Caldwell, L.: Nonuniformity Correction and Correctability of infrared focal plane arrays. Infrared Phys. Technology 36, 763–777 (1995)CrossRefGoogle Scholar
  12. 12.
    Scribner, D., Sarkady, K., Kruer, M.: Adaptive nonuniformity correction for infrared focal plane arrays using neural networks. In: Proc. of SPIE, vol. 1541, pp. 100–109 (1991)Google Scholar
  13. 13.
    Scribner, D., Sarkady, K., Kruer, M.: Adaptive retina-like preprocessing for imaging detector arrays. In: Proc. of the IEEE Int. Conf. on Neural Net., vol. 3, pp. 1955–1960 (1993)Google Scholar
  14. 14.
    Wang, B., Liu, S., Bai, L.: An enhanced non-uniformity correction algorithm for IRFPA based on neural network. Optics Communications 281, 2040–2045 (2008)CrossRefGoogle Scholar
  15. 15.
    Wang, Z., Bovik, A.: A universal image quality index. IEEE SP L 9, 81–84 (2002)Google Scholar
  16. 16.
    Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE T. on Image Proc. 13, 600–612 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Pablo Meza
    • 1
    • 3
  • César San Martin
    • 2
    • 3
  • Esteban Vera
    • 1
    • 3
  • Sergio Torres
    • 1
    • 3
  1. 1.Depto. Ing. EléctricaUniversidad de ConcepciónConcepciónChile
  2. 2.Depto. Ing. EléctricaUniversidad de La FronteraTemucoChile
  3. 3.Center for Optics and PhotonicsUniversidad de ConcepciónConcepciónChile

Personalised recommendations