A Combination of Classifiers for the Pronominal Anaphora Resolution in Basque

  • Ana Zelaia Jauregi
  • Basilio Sierra
  • Olatz Arregi Uriarte
  • Klara Ceberio
  • Arantza Díaz de Illarraza
  • Iakes Goenaga
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6419)

Abstract

In this paper we present a machine learning approach to resolve the pronominal anaphora in Basque language. We consider different classifiers in order to find the system that fits best to the characteristics of the language under examination. We apply the combination of classifiers which improves results obtained with single classifiers. The main contribution of the paper is the use of bagging having as base classifier a non-soft one for the anaphora resolution in Basque.

Keywords

Random Forest Noun Phrase Training Instance Coreference Resolution Anaphora Resolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aduriz, I., Aranzabe, M.J., Arriola, J.M., Daz de Ilarraza, A., Gojenola, K., Oronoz, M., Uria, L.: A cascaded syntactic analyser for basque. In: Gelbukh, A. (ed.) CICLing 2004. LNCS, vol. 2945, pp. 124–134. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Aduriz, I., Aranzabe, M.J., Arriola, J.M., Atutxa, A., Daz de Ilarraza, A., Ezeiza, N., Gojenola, K., Oronoz, M., Soroa, A., Urizar, R.: Methodology and steps towards the construction of EPEC, a corpus of written Basque tagged at morphological and syntactic levels for the automatic processing. In: Wilson, A., Archer, D., Rayson, P. (eds.) Language and Computers, Corpus Linguistics Around the World, Rodopi, Netherlands, pp. 1–15 (2006)Google Scholar
  3. 3.
    Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)MATHGoogle Scholar
  4. 4.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA Data Mining Software: An Update. SIGKDD Explorations 11(1) (2009)Google Scholar
  5. 5.
    Hirst, G.: Anaphora in Natural Language Understanding. Springer, Berlin (1981)CrossRefGoogle Scholar
  6. 6.
    Moosavi, N.S., Ghassem-Sani, G.: Using Machine Learning Approaches for Persian Pronoun Resolution. In: Workshop on Corpus-Based Approaches to Conference Resolution in Romance Languages, CBA 2008 (2008)Google Scholar
  7. 7.
    Moosavi, N.S., Ghassem-Sani, G.: A Ranking Approach to Persian Pronoun Resolution. Advances in Computational Linguistics. Research in Computing Science 41, 169–180 (2009)Google Scholar
  8. 8.
    Nguy, G.L., Zabokrtský, Z.: Rule-based Approach to Pronominal Anaphora Resolution Method Using the Prague Dependency Treebank 2.0 Data. In: Proceedings of DAARC 2007, 6th Discourse Anaphora and Anaphor Resolution Colloquium (2007)Google Scholar
  9. 9.
    Palomar, M., Civit, M., Díaz, A., Moreno, L., Bisbal, E., Aranzabe, M.J., Ageno, A., Mart, M.A., Navarro, B.: 3LB: Construcción de una base de datos de árboles sintáctico-semánticos para el catalán, euskera y español. In: XX. Congreso SEPLN, Barcelona (2004)Google Scholar
  10. 10.
    Soon, W.M., Ng, H.T., Lim, D.C.Y.: A Machine Learning Approach to Coreference Resolution of Noun Phrases. Computational Linguistics 27(4), 521–544 (2001)CrossRefGoogle Scholar
  11. 11.
    Vemulapalli, S., Luo, X., Pitrelli, J.F., Zitouni, I.: Using Bagging and Boosting Techniques for Improving Coreference Resolution. Informatica 34, 111–118 (2010)MATHGoogle Scholar
  12. 12.
    Versley, Y.: A Constraint-based Approach to Noum Phrase Coreference Resolution in German Newspaper Text. In: Konferenz zur Verarbeitung Natrlicher Sprache KONVENS (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ana Zelaia Jauregi
    • 1
  • Basilio Sierra
    • 1
  • Olatz Arregi Uriarte
    • 1
  • Klara Ceberio
    • 1
  • Arantza Díaz de Illarraza
    • 1
  • Iakes Goenaga
    • 1
  1. 1.University of the Basque CountrySpain

Personalised recommendations