Comparative Analysis between Wavelets for the Identification of Pathological Voices

  • Náthalee Cavalcanti
  • Sandro Silva
  • Adriano Bresolin
  • Heliana Bezerra
  • Ana Maria G. Guerreiro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6419)


This study presents a comparative analysis of wavelets, in order to find a descriptor that provides a better classification of voice pathologies. Different types of Wavelet Packet Transform were used as a tool for feature extraction and Support Vector Machine (SVM) to classify vocal disorders. Tests were conducted with 23 wavelets types in two SVMs, the first using the strategy “one vs. all” to classify normal and pathological voices and the second, using the strategy “one vs. one” to classify pathologies: edema and nodules. The best results were obtained using Daubechies family, especially Daubechies 5 (db5) wavelet.


Vocal disorder Wavelet Packet Transform Support Vector Machine (SVM) 


  1. 1.
    Davis, S.B.: Acoustic Characteristics of Normal and Pathological Voices. Speech and Language: Advances in Basic Research and Practice 1, 271–335 (1979)CrossRefGoogle Scholar
  2. 2.
    Quek, F., Harper, M., Haciahmetoglou, Y., Chen, L., Raming, L.O.: Speech pauses and gestural holds in Parkinson’s disease. In: Proc. of International Conference on Spoken Language Processing, pp. 2485–2488 (2002)Google Scholar
  3. 3.
    Martinez, C.E., Rufiner, H.L.: Acoustic Analysis of Speech for Detection of Laryngeal Pathologies. In: Proceedings of the 22nd Annual International Conference of IEEE Engineering in Medicine and Biology Society, Chicago, EUA, vol. 3, pp. 2369–2372 (2000)Google Scholar
  4. 4.
    Costa, S.C., Correia, S., Falcão, H., Almeida, N., Assis, F.: Uso da Entropia na Discriminação de Vozes Patológicas. In: II Congresso de Inovação da Rede Norte Nordeste de Educação Tecnológica, João Pessoa, Paraíba (2007)Google Scholar
  5. 5.
    Soares, H.B., Neto, A.D.D., de Carvalho, M.A.G.: Extration and Selection of Characteristics in Skin Lesions Images Using Wavelet in Multiresolution Analysis. In: ASME 2007 Summer Bioengineering Conference, SBC 2007 (2007)Google Scholar
  6. 6.
    Bresolin, A.A., Neto, A.D.D., Alsina, P.J.: Brasilian Vowels Recongnition using a New Hierarchical Decision Structure with Wavelet Packet and SVM. In: IEEE Intern. Conf. on Acoustics, Speech and Signal Processing. ICASSP 2007, vol. 2, pp. 493–496 (April 2007)Google Scholar
  7. 7.
    Kim, J., Cho, S., Choi, J.: Iris Recognition Using Wavelet Features. Journal of VLSI Signal Processing 38, 147–156 (2004)CrossRefGoogle Scholar
  8. 8.
    de Almeida, N.C., Barros, J.D., Soares, H.B., Bresolin, A.A., Guerreiro, A.M.G., Brandão, G.B.: A new computational tool for voice analysis based on FFT, Wavelet Transform and Spectrogram. In: Proceedings of the ASME 2009 Summer Bioengineering Conference, SBC 2009 (2009)Google Scholar
  9. 9.
    Yang, S., Er, M.J., Gao, Y.: A high performance neural-networks-based speech recognition system. In: International Joint Conference on Neural Networks, IJCNN 2001, vol. 2, pp. 1527–1531 (July 2001)Google Scholar
  10. 10.
    Levison, S.C.: Mathematical Models for Speech Technology. John Wiley & Sons Ltd., West Sussex (2005)CrossRefGoogle Scholar
  11. 11.
    Júnior, A.J.P., Castilho, J.E.: Um estudo comparative entre a Análise de Fourier e Análise Wavelet. FAMAT em Revista – Número 05- Setembro (2005)Google Scholar
  12. 12.
    Parraga, A.: Aplicação da Transformada Wavelet Packet na Análise e Classificação de vozes patológicas. UFRGS, Porto Alegre (2002)Google Scholar
  13. 13.
    Vapnik, V.N.: Principles of risk minimization for learning thoery. In: Advances in Neural Information Processing Systems, San Mateo, CA, vol. 4, pp. 831–838 (1992)Google Scholar
  14. 14.
    Haykin, S.: Redes Neurais: Princípios e Prática. 2a Edição, Porto Alegre, Editora Bookman (2001)Google Scholar
  15. 15.
    Bresolin, A.A., Neto, A.D.D., Alsina, P.J.: Digit recognition using wavelet and SVM in Brazilian Portuguese. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2008, Las Vegas, USA, pp. 1545–1548 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Náthalee Cavalcanti
    • 1
  • Sandro Silva
    • 1
  • Adriano Bresolin
    • 2
  • Heliana Bezerra
    • 1
  • Ana Maria G. Guerreiro
    • 1
  1. 1.UFRNFederal University of Rio grande do NorteBrazil
  2. 2.UTFPRFederal Technological University of ParanáBrazil

Personalised recommendations