An Unified Transition Detection Based on Bipartite Graph Matching Approach

  • Zenilton Kleber Gonçalves do PatrocínioJr.
  • Silvio Jamil F. Guimarães
  • Henrique Batista da Silva
  • Kleber Jacques Ferreira de Souza
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6419)


This paper addresses transition detection which consists in identifying the boundary between consecutive shots. In this work, we propose an approach to cope with transition detection in which we define and use a new dissimilarity measure based on the size of the maximum cardinality matching calculated using a bipartite graph with respect to a sliding window. The experiments have used two video datasets which presents a variety of different video genres with 3079 transitions. Our method achieves performance measures similar to the best results found in the literature with a much simpler classification approach.


Bipartite graph matching cut gradual transition 


  1. 1.
    Naphade, M.R., Mehrotra, R., Ferman, A.M., Warnick, J., Huang, T.S., Tekalp, A.M.: A high-performance shot boundary detection algorithm using multiple cues. In: Proc. Int. Conf. Image Processing - ICIP, pp. 884–887 (1998)Google Scholar
  2. 2.
    Yuan, J., Wang, H., Xiao, L., Zheng, W., Li, J., Lin, F., Zhang, B.: A formal study of shot boundary detection. IEEE Transactions on Circuits and Systems for Video Technology 17(2), 168–186 (2007)CrossRefGoogle Scholar
  3. 3.
    Wang, Y., Liu, Z., Huang, J.-C.: Multimedia content analysis. IEEE Signal Processing Magazine, 12–36 (2000)Google Scholar
  4. 4.
    Ngo, C.-W., Pong, T.-C., Chin, R.T.: Detection of gradual transitions through temporal slice analysis. In: CVPR, pp. 1036–1041. IEEE Computer Society, Los Alamitos (1999)Google Scholar
  5. 5.
    Zabih, R., Miller, J., Mai, K.: A feature-based algorithm for detecting and classifying production effects. Multimedia Syst. 7(2), 119–128 (1999)CrossRefGoogle Scholar
  6. 6.
    Fernando, W.A.C., Canagarajah, C.N., Bull, D.R.: Fade and dissolve detection in uncompressed and compressed video sequences. In: ICIP, vol. (3), pp. 299–303 (1999)Google Scholar
  7. 7.
    Zhang, H., Kankanhalli, A., Smoliar, S.W.: Automatic partitioning of full-motion video. Multimedia Syst. 1(1), 10–28 (1993)CrossRefGoogle Scholar
  8. 8.
    Bescos, J., Cisneros, G., Martinez, J., Menendez, J., Cabrera, J.: A unified model for techniques on video-shot transition detection. IEEE Transactions on Multimedia 7(2), 293–307 (2005)CrossRefGoogle Scholar
  9. 9.
    Grana, C., Cucchiara, R.: Linear transition detection as a unified shot detection approach. IEEE Transactions on Circuits and Systems for Video Technology 17(4), 483–489 (2007)CrossRefGoogle Scholar
  10. 10.
    Guimarães, S.J.F., Patrocínio Jr., Z.K.G., de Paula, H.B.: A rotation and translation invariant algorithm for cut detection using bipartite graph matching. In: Proc. of the Tenth IEEE International Symposium on Multimedia (ISM 2008), pp. 104–110. IEEE Computer Society Press, Los Alamitos (2008)CrossRefGoogle Scholar
  11. 11.
    Yeo, B.-L., Liu, B.: A unified approach to temporal segmentation of motion jpeg and mpeg compressed video. In: Proceedings of the International Conference on Multimedia Computing and Systems, pp. 81–88 (May 1995)Google Scholar
  12. 12.
    Whitehead, A., Bose, P., Laganiere, R.: Feature based cut detection with automatic threshold selection. In: Enser, P.G.B., Kompatsiaris, Y., O’Connor, N.E., Smeaton, A., Smeulders, A.W.M. (eds.) CIVR 2004. LNCS, vol. 3115, pp. 410–418. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Zenilton Kleber Gonçalves do PatrocínioJr.
    • 1
  • Silvio Jamil F. Guimarães
    • 1
  • Henrique Batista da Silva
    • 1
  • Kleber Jacques Ferreira de Souza
    • 1
  1. 1.Audio-Visual Information Processing Laboratory (VIPLAB) Institute of InformaticsPontifícia Universidade Católica de Minas GeraisBelo HorizonteBrazil

Personalised recommendations