A Very Low Bit-Rate Minimalist Video Encoder Based on Matching Pursuits

  • Vitor de Lima
  • Helio Pedrini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6419)

Abstract

This work proposes and implements a simple and efficient video encoder based on the compression of consecutive frame differences using sparse decomposition through matching pursuits. Despite its minimalist design, the proposed video codec has performance compatible to H.263 video standard and, unlike other encoders based on similar techniques, is capable of encoding videos in real time. Average PSNR and image quality consistency are compared to H.263 using a set of video sequences.

Keywords

Video Sequence Consecutive Frame Matching Pursuit Video Codec Video Encoder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aharon, M., Elad, M., Bruckstein, A.: K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation. IEEE Transactions on Signal Processing 54(11), 4311–4322 (2006)CrossRefGoogle Scholar
  2. 2.
    Aizawa, K., Harashima, H., Saito, T.: Model-Based Analysis Synthesis Image Coding (MBASIC) System for a Person’s Face. Signal Processing: Image Communications 1(2), 139–152 (1989)Google Scholar
  3. 3.
    Al-Shaykh, O., Miloslavsky, E., Nomura, T., Neff, R., Zakhor, A.: Video Compression using Matching Pursuits. IEEE Transactions on Circuits and Systems for Video Technology 9(1), 123–143 (1999)CrossRefGoogle Scholar
  4. 4.
    avcodec: libavcodec: A Library containing Decoders and Encoders for Audio/Video Codecs (2010), http://www.ffmpeg.org/
  5. 5.
    Bhaskaran, V., Konstantinides, K.: Image and Video Compression Standards: Algorithms and Architectures. Kluwer Academic Publishers, Norwell (1997)CrossRefGoogle Scholar
  6. 6.
    CCITT: Video Codec for Audiovisual Services at p × 64 kbit/s, CCITT Recommendation H.261, CDM XV-R 37-E (August 1990)Google Scholar
  7. 7.
    Davis, G.: Adaptive Nonlinear Approximations. Ph.D. thesis, Department of Mathematics, New York University (1994)Google Scholar
  8. 8.
    Elad, M., Aharon, M.: Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries. IEEE Transactions on Image Processing 15(12), 3736–3745 (2006)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Furht, B., Furht, B.: Motion Estimation Algorithms for Video Compression. Kluwer Academic Publishers, Norwell (1996)MATHGoogle Scholar
  10. 10.
    H263: ITU-T Recommendation H.263, Video Coding for Low Bit Rate Communication (September 1997)Google Scholar
  11. 11.
    Jacquin, A.: Image Coding Based on a Fractal Theory of Iterated Contractive Image Transformations. IEEE Transactions on Image Processing 1(1), 18–30 (1992)CrossRefGoogle Scholar
  12. 12.
    Mallat, S., Zhang, Z.: Matching Pursuit with Time-Frequency Dictionaries. IEEE Transactions on Signal Processing 41, 3397–3415 (1993)CrossRefMATHGoogle Scholar
  13. 13.
    Media, X.T.: Video Sequences (2010), http://media.xiph.org/video/derf/
  14. 14.
    Neff, R., Nomura, T., Zakhor, A.: Decoder Complexity and Performance Comparison of Matching Pursuit and DCT-based MPEG-4 Video Codecs. In: International Conference on Image Processing, Chicago, IL, USA, pp. 783–787 (October 1998)Google Scholar
  15. 15.
    Neff, R., Zakhor, A.: Very-Low Bit-Rate Video Coding Based on Matching Pursuits. IEEE Transactions on Circuits and Systems for Video Technology 7(1), 158–171 (1997)CrossRefGoogle Scholar
  16. 16.
    NVIDIA: CUDA - Parallel Computing Architecture (2010), http://www.nvidia.com/
  17. 17.
    Rebollo-Neira, L., Lowe, D.: Optimized Orthogonal Matching Pursuit Approach. IEEE Signal Processing Letters 9(4), 137–140 (2002)CrossRefGoogle Scholar
  18. 18.
    Said, A.: Arithmetic Coding. Communications, Networking, and Multimedia. In: Lossless Compression Handbook. Academic Press, London (2003)Google Scholar
  19. 19.
    Sculley, D., Brodley, C.: Compression and Machine Learning: A New Perspective on Feature Space Vectors. In: Data Compression Conference, Snowbird, UT, USA, pp. 332 (March 2006)Google Scholar
  20. 20.
    Shapiro, J.: Application of the Embedded Wavelet Hierarchical Image Coder to Very Low Bit Rate Image Coding. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, Minneapolis, MN, USA, vol. 5, pp. 558–561 (April 1993)Google Scholar
  21. 21.
    Wang, B., Wang, Y., Yin, P.: A Two Pass H.264-Based Matching Pursuit Video Coder. In: IEEE International Conference on Image Processing, Atlanta, GA, USA, pp. 3149–3152 (October 2006)Google Scholar
  22. 22.
    Zhang, H., Wang, X., Huo, W., Monro, D.: A Hybrid Video Coder Based on H.264 with Matching Pursuits. In: IEEE International Conference on Acoustics, Speech and Signal Processing, Toulouse, France, vol. 2, pp. 889–892 (July 2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Vitor de Lima
    • 1
  • Helio Pedrini
    • 1
  1. 1.Institute of ComputingUniversity of CampinasCampinasBrazil

Personalised recommendations