Comments on Matrix-Based Secret Sharing Scheme for Images

  • Esam Elsheh
  • A. Ben Hamza
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6419)

Abstract

Several attempts have been made to propose efficient secret sharing schemes for 2D images. Rey M.D (Iberoamerican Congress on Pattern Recognition, 2008) proposed a relatively fast image secret sharing scheme based on simple binary matrix operations. In this work, we show that care should be taken when choosing the matrices that corresponding to the shares, in particular if the rank of these singular matrices is not low enough then one can recover the secret image from only one share. Experimental results are provided to demonstrate the practicality of the recovery procedure on various 2D images.

Keywords

Secret sharing Image processing Cryptanalysis 

References

  1. 1.
    Cheng, H., Xiaobo, L.: Partial encryption of compressed images and videos. IEEE Trans. Signal Process. 48(8), 2439–2451 (2000)CrossRefGoogle Scholar
  2. 2.
    Bourbakis, N., Dollas, A.: Scan-based compression-encryption hiding for video on demand. IEEE Multimedia Mag. 10, 79–87 (2003)CrossRefGoogle Scholar
  3. 3.
    Marvel, L.M., Boncelet, C.G., Retter, C.T.: Spread spectrum image steganography. IEEE Trans. Image Process. 8(8), 1075–1083 (1999)CrossRefGoogle Scholar
  4. 4.
    Petitcolas, F.A.P., Anderson, R.J., Kuhn, M.G.: Information hiding-a survey. Proc. IEEE, Special Issue on Protection of Multimedia Content 87(7), 1062–1078 (1999)Google Scholar
  5. 5.
    Shamir, A.: How to share a secret. ACM Comm. 22(11), 612–613 (1979)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Blakley, G.R.: Safeguarding cryptography keys. In: Proc. of the AFIPS 1979 National Computer Conference, vol. 48, pp. 313–317 (1979)Google Scholar
  7. 7.
    Menezes, A., Van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1997)MATHGoogle Scholar
  8. 8.
    Tsai, D., Chen, T., Horng, G.: A cheating prevention scheme for binary visual cryptography with homogeneous secret images. Pattern Recogn. 40, 2356–2366 (2007)CrossRefMATHGoogle Scholar
  9. 9.
    Chang, C., Hwang, R.: Sharing secret images using shadow codebooks. Inform. Sciences 111, 335–345 (1998)CrossRefGoogle Scholar
  10. 10.
    Wang, R.Z., Su, C.H.: Secret image sharing with smaller shadow images. Pattern Recognition Letters 27(6), 551–555 (2006)CrossRefGoogle Scholar
  11. 11.
    Thien, C.C., Lin, J.C.: Secret image sharing. Computers and Graphics 26(1), 765–770 (2002)CrossRefGoogle Scholar
  12. 12.
    Wu, Y., Thien, L., Lin, J.: Sharing and hiding secret images with size constrain. Pattern Recogn. 37, 1377–1385 (2004)CrossRefGoogle Scholar
  13. 13.
    Rey, M.D.: A matrix-based secret sharing scheme for images. In: Ruiz-Shulcloper, J., Kropatsch, W.G. (eds.) CIARP 2008. LNCS, vol. 5197, pp. 635–642. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Bard, G.: Algorithms for the solution of linear and polynomial systems of equations over finite fields, with applications to cryptanalysis. PhD thesis, Department of Applied Mathematics and Scientific Computation, University of Maryland at College Park (2007)Google Scholar
  15. 15.
    Studholme, C., Blake, I.F.: Random Matrices and Codes for the Erasure Channel. Algorithmica 56(4), 605–620 (2010)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    William, S.: Sage Mathematics Software (Version 4.4.2). The Sage Group (2010), http://www.sagemath.org

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Esam Elsheh
    • 1
  • A. Ben Hamza
    • 1
  1. 1.Concordia Institute for Information Systems EngineeringConcordia UniversityMontréalCanada

Personalised recommendations