Advertisement

Inference of Restricted Stochastic Boolean GRN’s by Bayesian Error and Entropy Based Criteria

  • David Correa MartinsJr.
  • Evaldo Araújo de Oliveira
  • Vitor Hugo Louzada
  • Ronaldo Fumio Hashimoto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6419)

Abstract

This work compares two frequently used criterion functions in inference of gene regulatory networks (GRN), one based on Bayesian error and another based on conditional entropy. The network model utilized was the stochastic restricted Boolean network model; the tests were realized in the well studied yeast cell-cycle and in randomly generated networks. The experimental results support the use of entropy in relation to the use of Bayesian error and indicate that the application of a fast greedy feature selection algorithm combined with an entropy-based criterion function can be used to infer accurate GRN’s, allowing to accurately infer networks with thousands of genes in a feasible computational time cost, even though some genes are influenced by many other genes.

Keywords

feature selection gene regulatory networks inference stochastic restricted Boolean network models entropy Bayesian error 

References

  1. 1.
    Sima, C., Hua, J., Jung, S.: Inference of gene regulatory networks using time-series data: A survey. Current Genomics 10, 416–429 (2009)CrossRefGoogle Scholar
  2. 2.
    Zhang, Y., Qian, M., Ouyang, Q., Deng, M., Li, F., Tang, C.: Stochastic model of yeast cell-cycle network. Physica D 219(1), 35–39 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Somol, P., Pudil, P.: Fast branch & bound algorithms for optimal feature selection. Pattern Analysis and Machine Intelligence 26(7), 900–912 (2004)CrossRefGoogle Scholar
  4. 4.
    Ris, M., Martins Jr., D.C., Barrera, J.: U-curve: A branch-and-bound optimization algorithm for u-shaped cost functions on boolean lattices applied to the feature selection problem. Pattern Recognition 43(3), 557–568 (2010)CrossRefzbMATHGoogle Scholar
  5. 5.
    Somol, P., Pudil, P., Novovicová, J., Paclk, P.: Adaptive floating search methods in feature selection. Pattern Recognition Letters 20, 1157–1163 (1999)CrossRefGoogle Scholar
  6. 6.
    Martins Jr., D.C., Braga-Neto, U., Hashimoto, R.F., Dougherty, E.R., Bittner, M.L.: Intrinsically multivariate predictive genes. IEEE Journal of Selected Topics in Signal Processing 2(3), 424–439 (2008)CrossRefGoogle Scholar
  7. 7.
    Anastassiou, D.: Computational analysis of the synergy among multiple interacting genes. Molecular Systems Biology 3(83) (2007)Google Scholar
  8. 8.
    Pudil, P., Novovičová, J., Kittler, J.: Floating search methods in feature-selection. Pattern Recognition Letters 15(11), 1119–1125 (1994)CrossRefGoogle Scholar
  9. 9.
    Hashimoto, R.F., Kim, S., Shmulevich, I., Zhang, W., Bittner, M.L., Dougherty, E.R.: Growing genetic regulatory networks from seed genes. Bioinformatics 20(8), 1241–1247 (2004)CrossRefGoogle Scholar
  10. 10.
    Dougherty, E.R., Brun, M., Trent, J., Bittner, M.L.: A conditioning-based model of contextual regulation. IEEE/ACM Transactions on Computational Biology and Bioinformatics (August 2007)Google Scholar
  11. 11.
    Ghaffari, N., Ivanov, I., Qian, X., Dougherty, E.R.: A CoD-based reduction algorithm for designing stationary control policies on boolean networks. Bioinformatics 26(12), 1556–1563 (2010)CrossRefGoogle Scholar
  12. 12.
    Liang, S., Fuhrman, S., Somogyi, R.: Reveal: a general reverse engineering algorithm for inference of genetic network architectures. In: Pacific Symposium Biocomputing, PSB, pp. 18–29 (1998)Google Scholar
  13. 13.
    Zhao, W., Serpedin, E., Dougherty, E.R.: Inferring connectivity of genetic regulatory networks using information-theoretic criteria. IEEE/ACM Transactions on Computational Biology and Bioinformatics 5(2), 262–274 (2008)CrossRefGoogle Scholar
  14. 14.
    Theil, H.: Statistical Decomposition Analysis. North-Holland Publishing Company, Amsterdam (1972)zbMATHGoogle Scholar
  15. 15.
    Li, F., Long, T., Lu, Y., Ouyang, Q., Tang, C.: The yeast cell-cycle network is robustly designed. Proc. Natl. Acad. Sci. USA 101(14), 4781–4786 (2004)CrossRefGoogle Scholar
  16. 16.
    Higa, C., Hashimoto, R., Hirata, R., Hirata, N., Santos, C.: Inference of gene regulatory network using temporal coefficient of determination obtained from ergodic markov chains. In: IEEE International Workshop on Genomic Signal Processing and Statistics, GENSIPS 2009, pp. 1–4 (May 2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • David Correa MartinsJr.
    • 1
  • Evaldo Araújo de Oliveira
    • 2
  • Vitor Hugo Louzada
    • 2
  • Ronaldo Fumio Hashimoto
    • 2
  1. 1.Center for Mathematics, Computation and CognitionFederal University of ABCBrazil
  2. 2.Institute of Mathematics and StatisticsUniversity of São PauloBrazil

Personalised recommendations