Background Division, A Suitable Technique for Moving Object Detection

  • Walter Izquierdo-Guerra
  • Edel García-Reyes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6419)


Nowadays, background model does not have any robust solution and constitutes one of the main problems in surveillance systems. Researchers are working in several approaches in order to get better background pixel models. This is a previous step to apply the background subtraction technique and results are not as good as expected. We concentrate our efforts on the second step for segmentation of moving objects and we propose background division to substitute background subtraction technique.This approach allows us to obtain clusters with lower intraclass variability and higher inter-class variability, this diminishes confusion between background and foreground,pixels.We compared results using our background division approach versus wallflowers algorithm [1] as the baseline to compare.


Gaussian Mixture Model Background Subtraction Object Detection Background Model Illumination Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallower: Principles and practice of background maintenance. In: Seventh International Conference on Computer Vision, vol. 1, p. 255 (1999)Google Scholar
  2. 2.
    Sen, Kamath, C.: Robust techniques for background subtraction in urban traffic video, vol. 5308, pp. 881–892. SPIE, San Jose (2004)Google Scholar
  3. 3.
    Ribeiro, H.N., Hall, D., Nascimento, J., Ribeiro, P., Andrade, E., Moreno, P., Pesnel, S., List, T., Emonet, R., Fisher, R.B., Santos Victor, J., Crowley, J.L.: Comparison of target detection algorithms using adaptive background models. In: Proc. 2nd Joint IEEE Int. Workshop on Visual Surveillance and VisLab-TR 13/2005, pp. 113–120 (2005)Google Scholar
  4. 4.
    Mcivor, A.M.: Background subtraction techniques. In: Proc. of Image and Vision Computing, pp. 147–153 (2000)Google Scholar
  5. 5.
    Heikkilä, J., Silvén, O.: A real-time system for monitoring of cyclists and pedestrians. Image and Vision Computing 22(7), 563–570 (2004)CrossRefGoogle Scholar
  6. 6.
    Power, P.W., Schoonees, J.A.: Understanding background mixture models for foreground segmentation. In: Proceedings Image and Vision Computing, New Zealand, p. 267 (2002)Google Scholar
  7. 7.
    Schindler, K., Wang, H.: Smooth foreground-background segmentation for video processing (2006)Google Scholar
  8. 8.
    Bouwmans, T., Baf, F.E., Vachon, B.: Background modeling using mixture of gaussians for foreground detection - a survey. Recent Patents on Computer Science 1, 219–237 (2008)CrossRefGoogle Scholar
  9. 9.
    Kaewtrakulpong, P., Bowden, R.: An improved adaptive background mixture model for realtime tracking with shadow detection. In: Proc. 2nd European Workshop on Advanced Video Based Surveillance Systems, AVBS 2001, VIDEO BASED SURVEILLANCE SYSTEMS: Computer Vision and Distributed Processing (2001)Google Scholar
  10. 10.
    Frish, S., Timoreva, A.: Curso de Física General, vol. 3. MIR, Moscow (1973)Google Scholar
  11. 11.
    Bécsi And, T., Péter, T.: A mixture of distributions background model for traffic video surveillance. Periodica Polytechnica Ser. Transp. Eng. 34, 109–117 (2006)Google Scholar
  12. 12.
    Izquierdo-Guerra, W., García-Reyes, E.B.: A novel approach to robust background subtraction. In: Bayro-Corrochano, E., Eklundh, J.-O. (eds.) CIARP 2009. LNCS, vol. 5856, pp. 69–76. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital Image Processing Using MATLAB. Prentice-Hall, Inc., Upper Saddle River (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Walter Izquierdo-Guerra
    • 1
  • Edel García-Reyes
    • 1
  1. 1.Advanced Technologies Application Center (CENATAV)PlayaCuba

Personalised recommendations