Content-Based Emblem Retrieval Using Zernike Moments

  • Ezequiel Cura
  • Mariano Tepper
  • Marta Mejail
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6419)

Abstract

The problem of content-based image retrieval is becoming essential in many real-world applications, mostly due to the growth in size of modern image databases. In particular, this work addresses the retrieval of trademark emblems, which is key for detecting trademark infringement. A common approach that proved suitable for this task, is to encode emblems using shape descriptors and Zernike complex moments. This work focuses on their study, proposing a two-fold contribution. First, we present some modifications to Zernike complex moments and then we explore the use of different comparison metrics. Both have shown to report improvements in retrieved results and in execution time.

Keywords

Zernike Moment Handwritten Digit Trademark Infringement Zernike Moment Descriptor Zernike Moment Feature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 509–522 (2002)CrossRefGoogle Scholar
  2. 2.
    Kotoulas, L., Andreadis, I.: Image analysis using moments. In: Alexander Technological Educational Institute (ATEI) of Thessaloniki, Greece, pp. 360–364 (2005)Google Scholar
  3. 3.
    Khotanzad, A., Hong, Y.H.: Invariant image recognition by zernike moments. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 489–497 (1990)CrossRefGoogle Scholar
  4. 4.
    Li, S., Lee, M.C., Pun, C.M.: Complex zernike moments features for shape-based image retrieval. Trans. Sys. Man Cyber. Part A 39, 227–237 (2009)CrossRefGoogle Scholar
  5. 5.
    Amayeh, G.R., Erol, A., Bebis, G., Nicolescu, M.: Accurate and efficient computation of high order zernike moments. In: Bebis, G., Boyle, R., Koracin, D., Parvin, B. (eds.) ISVC 2005. LNCS, vol. 3804, pp. 462–469. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Horel, J.D.: Complex principal component analysis: Theory and examples. Journal of Climate and Applied Meteorology 23, 1660–1673 (1984)CrossRefGoogle Scholar
  7. 7.
    Turk, M.A., Pentland, A.P.: Face recognition using eigenfaces. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 586–591 (1991)Google Scholar
  8. 8.
    Revaud, J., Lavoué, G., Baskurt, A.: Improving zernike moments comparison for optimal similarity and rotation angle retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 627–636 (2009)CrossRefGoogle Scholar
  9. 9.
    Latecki, L., Lakamper, R., Eckhardt, U.: Shape descriptors for non-rigid shapes with a single closed contour. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. 2000, pp. 424–429 (2000)Google Scholar
  10. 10.
    Geusebroek, J.M., Burghouts, G.J., Smeulders, A.W.M.: The amsterdam library of object images. Int. J. Comput. Vision 1, 103–112 (2005)CrossRefGoogle Scholar
  11. 11.
    Lecun, Y., Cortes, C.: The mnist database of handwritten digits (2004), http://yann.lecun.com/exdb/mnist/

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ezequiel Cura
    • 1
  • Mariano Tepper
    • 1
  • Marta Mejail
    • 1
  1. 1.Departamento de Computacion, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresArgentina

Personalised recommendations