Advertisement

Generation of Synthetic Multifractal Realistic Surfaces Based on Natural Model and Lognormal Cascade: Application to MRI Classification

  • Mohamed Khider
  • Abdelmalik Taleb-Ahmed
  • Boualem Haddad
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6419)

Abstract

This paper presents a method of generating realistic synthetic multi-fractals surfaces, constructed with multiplicative cascades, that follow lognormal probability density function. The conservation of the natural image gradient direction, and the variance of the difference minimization at each scale between natural image multipliers and those of the selected lognormal model, preserves the initial texture structure. Validation of the model is made with wavelet leader based multifractal analysis, we also propose an application to MRI classification of trabecular bone texture, to differentiate between healthy and osteoporotic cases.

Keywords

lognormal cascade Discrete Wavelet Transform wavelet leader multifractal analysis Monte-Carlo sampling Iterative Conditional Modes (ICM) Markov Random Fields (MRF) probabilistic model and Bayesian classification 

References

  1. 1.
    Bharati, M.H., Liu, J.J., MacGregor, J.F.: Image texture analysis: methods and comparisons. J. Chemometrics and Intelligent Laboratory Systems 72, 57–71 (2004)CrossRefGoogle Scholar
  2. 2.
    Kolmogorov, A.N.: A refinement of previous hypotheses concerning the local structure of turbulence. J. Fluid Mech. 13, 83–85 (1962)CrossRefzbMATHGoogle Scholar
  3. 3.
    Obukhov, A.M.: Some specific features of atmospheric turbulence. J. Fluid Mech. 13, 77–81 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bacry, E., Muzy, J.F.: Log-infinitely divisible multifractal processes. Comm. In Math. Phys. 236, 449–475 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chainais, P., Li, J.-J.: Synthése de champs scalaires multifractals: application à la synthése de texture. In: GRETSI 2005, Louvain-la-Neuve, Belgique (2005)Google Scholar
  6. 6.
    Schmitt, F.G.: Intermittence et turbulences; analyse de données, validation de modéles et applications, HDR, Université Paris 6 (2001)Google Scholar
  7. 7.
    Frisch, U.: Turbulence. The legacy of A.N. Kolmogorov. Cambridge University Press, Cambridge (1995)zbMATHGoogle Scholar
  8. 8.
    Arneodo, A., Decoster, N., Roux, S.G.: A wavelet-based method for multifractal image analysis. I. Methodology and test applications on isotropic random rough surface. European Physical Journal B 15, 567–600 (2000)CrossRefGoogle Scholar
  9. 9.
    Arneodo, A., Decoster, N., Roux, S.G.: A wavelet-based method for multifractal image analysis. II. Applications to synthetic multifractal rough surface. European Physical Journal B 15, 739–764 (2000)CrossRefGoogle Scholar
  10. 10.
    Jaffard, S.: Multifractal formalism for function, part 1: Results valid for all functions. S.I.A.M: Journal of Mathematical Analysis 28, 944–970 (1997)zbMATHGoogle Scholar
  11. 11.
    Lashermes, Analyse multifractale pratique: coefficients dominants et ordres critiques. applications à la turbulence pleinement développé. effets de nombre de reynolds fini, Ph.D. thesis (2005)Google Scholar
  12. 12.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Edition Wiley InterScience, New York (2001)zbMATHGoogle Scholar
  13. 13.
    Kindermann, R., Laurie Snell, J.: Markov Random Fields and their applications. American Mathematical Society, Providence (1980)CrossRefzbMATHGoogle Scholar
  14. 14.
    Besag, J.: On the statistical analysis of dirty pictures. Journal of Royal Statistical Society. Series B (Methodological) 48, 259–302 (1986)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Pieczynski, W.: Modèles de Markov en traitements d’images. Traitement Du Signal 20, 255–278 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Mohamed Khider
    • 1
  • Abdelmalik Taleb-Ahmed
    • 2
  • Boualem Haddad
    • 1
  1. 1.Université des Sciences et de la Technologie Houari Boumedienne, LTIRAlgeria
  2. 2.Université de Valenciennes et du Hainaut Cambrésis, LAMIHFREFrance

Personalised recommendations