Advertisement

A Static Video Summarization Method Based on Hierarchical Clustering

  • Silvio Jamil F. Guimarães
  • Willer Gomes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6419)

Abstract

Video summarization is a simplification of video content for compacting the video information. The video summarization problem can be transformed to a clustering problem, in which some frames are selected to saliently represent the video content. In this work, we use a graph-theoretic divisive clustering algorithm based on construction of a minimum spanning tree to select video frames without segmenting the video into shots or scenes. Experimental results provides a visually comparison between the new approach and other popular algorithms from the literature, showing that the new algorithm is robust and efficient.

Keywords

Video summarization Minimum spanning tree Video analysis 

References

  1. 1.
    de Avila Jr., S.E.F., da Luz Jr., A., de Araújo, A.A., Cord, M.: Vsumm: An approach for automatic video summarization and quantitative evaluation. In: SIBGRAPI 2008: Proceedings of the 2008 XXI Brazilian Symposium on Computer Graphics and Image Processing, pp. 103–110. IEEE Computer Society, Washington (2008)CrossRefGoogle Scholar
  2. 2.
    Besiris, D., Fotopoulou, F., Economou, G., Fotopoulos, S.: Video summarization by a graph-theoretic fcm based algorithm. In: 15th International Conference on Systems, Signals and Image Processing, IWSSIP 2008, 25-28, pp. 511–514 (2008)Google Scholar
  3. 3.
    Furini, M., Geraci, F., Montangero, M., Pellegrini, M.: Visto: visual storyboard for web video browsing. In: Proceedings of the 6th ACM International Conference on Image and Video Retrieval, CIVR 2007, pp. 635–642. ACM, New York (2007)Google Scholar
  4. 4.
    Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: A review. ACM Comput. Surv. 31(3), 264–323 (1999)CrossRefGoogle Scholar
  5. 5.
    Kleinberg, J., Tardos, É.: Algorithm Design. Addison-Wesley, Reading (2006)Google Scholar
  6. 6.
    Mundur, P., Rao, Y., Yesha, Y.: Keyframe-based video summarization using delaunay clustering. Int. J. on Digital Libraries 6(2), 219–232 (2006)CrossRefGoogle Scholar
  7. 7.
    Rui, Y., Huang, T.S., Mehrotra, S.: Browsing and retrieving video content in a unified framework. In: 1998 IEEE Second Workshop on Multimedia Signal Processing, 7-9, pp. 9–14 (1998)Google Scholar
  8. 8.
    Tan, Y.P., Lu, H.: Video scene clustering by graph partitioning. Electronics Letters 39(11), 841–842 (2003)CrossRefGoogle Scholar
  9. 9.
    Yeung, M., Yeo, B.L.: Video visualization for compact presentation and fast browsing of pictorial content. IEEE Transactions on Circuits and Systems for Video Technology 7(5), 771–785 (1997)CrossRefGoogle Scholar
  10. 10.
    Zahn, C.: Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Transactions on Computers C-20(1), 68–86 (1971)CrossRefzbMATHGoogle Scholar
  11. 11.
    Zhu, S.H., Liu, Y.-C.: Automatic video partition for high-level search. IJCSES International Journal of Computer Sciences and Engineering Systems 2(3), 163–172 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Silvio Jamil F. Guimarães
    • 1
  • Willer Gomes
    • 1
  1. 1.Audio-Visual Information Processing Laboratory (VIPLAB)Institute of Informatics - Pontifícia Universidade Católica de Minas GeraisBelo HorizonteBrazil

Personalised recommendations