Skip to main content

Abstract

Measurements of the chemical compositions of materials and the levels of certain substances in them are vital when assessing and improving public health, safety and the environment, are necessary to ensure trade equity, and are required when monitoring and improving industrial products and services. Chemical measurements play a crucial role in most areas of the economy, including healthcare, food and nutrition, agriculture, environmental technologies, chemicals and materials, instrumentation, electronics, forensics, energy, and transportation.

This chapter presents a broad overview of the analytical techniques that can be used to perform the higher order chemical characterization of materials. Techniques covered include mass spectrometry, molecular spectrometry, atomic spectrometry, nuclear analytical methods, chromatographic methods and classical chemical methods.

For each technique, information is provided on the principle(s) of operation, the scope of the technique, the nature of the sample that can be used, qualitative analysis, traceable quantitative analysis, and key references. Examples of representative data are provided for each technique, where possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAS:

atomic absorption spectrometry

AED:

atomic emission detector

AEM:

analytical electron microscopy

AES:

Auger electron spectroscopy

APCI:

atmospheric pressure chemical ionization

ASTM:

American Society for Testing and Materials

ATR:

attenuated total reflection

BAM:

Federal Institute for Materials Research and Testing, Germany

BLRF:

bispectral luminescence radiance factor

CCD:

charge-coupled device

CCQM:

Comité Consultative pour la Quantité de Matière

CCQM:

Consultative Committee for Quantity of Matter Metrology in Chemistry

CE:

Communauté Européenne

CE:

Conformité Européenne

CE:

capillary electrophoresis

CE:

counter electrode

CGE:

capillary gel electrophoresis

CGHE:

carrier gas hot extraction

CIEF:

capillary isoelectric focusing

CITP:

capillary isotachophoresis

CMA:

cylindrical mirror analyzer

CPAA:

charged particle activation analysis

CRM:

certified reference material

CTD:

charge transfer device

CVD:

chemical vapor deposition

CW:

continuous wave

CZE:

capillary zone electrophoresis

DC:

direct current

EC:

electrochemical

ECD:

electron capture detector

EDS:

energy-dispersive spectrometer

EELS:

electron energy-loss spectroscopy

ELSD:

evaporative light scattering detection

EPMA:

electron probe microanalysis

EPR:

electron paramagnetic resonance

ESEM:

environmental scanning electron microscope

ESI:

electrospray ionization

FIB:

focused ion beam

FID:

free induction decay

FL:

Fermi level

FNAA:

fast neutron activation analysis

FPD:

flame photometric detector

FT:

Fourier transform

GC:

gas chromatography

GD-MS:

glow discharge mass spectrometry

GSED:

gaseous secondary electron detector

GUM:

Glowny-Urzad-Miar

GUM:

guide to the expression of uncertainty in measurement

HPLC:

high-performance liquid chromatography

HSA:

hemispherical analyzer

ICP:

inductively coupled plasma

ICR:

ion cyclotron resonance

INAA:

instrumental NAA

IR:

infrared

ISO:

International Organization for Standardization

LC:

liquid chromatography

LC:

liquid crystal

LED:

light-emitting diode

MDM:

minimum detectable mass

MECC:

micellar electrokinetic capillary chromatography

MLLSQ:

multiple linear least squares

MMF:

minimum mass fraction

MS:

magnetic stirring

MS:

mass spectrometry

NAA:

neutron activation analysis

NDP:

neutron depth profiling

NIR:

near infrared

NIST:

National Institute of Standards and Technology

NMI:

National Metrology Institute

NMR:

nuclear magnetic resonance

ODS:

octadecylsilane

OES:

optical emission spectroscopy/spectrometry

PAA:

photon activation analysis

PAH:

polycyclic aromatic hydrocarbon

PGAA:

prompt gamma activation analysis

PID:

photoionization detector

PIXE:

particle-induced x-ray emission

PMT:

photomultiplier tube

PTB:

Physikalisch-Technische Bundesanstalt

PTFE:

polytetrafluoroethylene

QNMR:

quantitative proton nuclear magnetic resonance

RF:

radiofrequency

RI:

refractive index

RNA:

nuclear reaction analysis

RNAA:

radiochemical NAA

RPLC:

reversed-phase liquid chromatography

RSF:

relative sensitivity factor

S/N:

signal-to-noise ratio

SDD:

silicon drift detector

SE:

secondary electron

SEM:

scanning electron microscopy

SI:

International System of Units

SI:

Système International dʼUnités

SIMS:

secondary ion mass spectrometry

SRE:

stray radiant energy

SRM:

standard reference material

STEM:

scanning transmission electron microscopy

TCD:

thermal conductivity detector

TEM:

transmission electron microscopy

TIMS:

thermal ionization mass spectrometry

TMS:

tetramethylsilane

TOF:

time of flight

UHV:

ultra-high vacuum

UV:

ultraviolet

UVSG:

UV Spectrometry Group

VG:

vortex glass

WDS:

wavelength-dispersive spectrometry

XEDS:

energy-dispersive x-ray spectrometry

XRF:

x-ray fluorescence

References

  1. A. Montaser, D.W. Golightly (Eds.): Inductively Coupled Plasmas in Analytical Atomic Spectrometry, 2nd edn. (Wiley-VCH, Weinheim 1992)

    Google Scholar 

  2. R.K. Marcus (Ed.): Glow Discharge Spectroscopies (Plenum, New York 1993) p. 514

    Google Scholar 

  3. R.K. Marcus, J.A.C. Broekaert (Eds.): Glow Discharge Plasmas in Analytical Spectroscopy (Wiley, Chichester 2003) p. 482

    Google Scholar 

  4. R.S. Houk, V.A. Fassel, G.D. Flesch, H.J. Svec, A.L. Gray, C.E. Taylor: Inductively coupled argon plasma as an ion source for mass spectrometric determination of trace elements, Anal. Chem. 52, 2283–2289 (1980)

    Article  Google Scholar 

  5. P. Semeniuk, S. Berman: Analysis of high purity metals and semiconductor materials by glow discharge mass spectrometry, Spectrochim. Acta Rev. 13, 1–10 (1990)

    Google Scholar 

  6. W.W. Harrison, K.R. Hess, R.K. Marcus, F.L. King: Glow discharge mass spectrometry, Anal. Chem. 58, 341A–356A (1986)

    Google Scholar 

  7. W.W. Harrison, B.L. Bentz: Glow discharge mass spectrometry, Prog. Anal. Spectrosc. 11, 53–110 (1988)

    Google Scholar 

  8. M.R. Winchester, R. Payling: Radio-frequency glow discharge spectrometry: A critical review, Spectrochim. Acta B 59, 607–666 (2004)

    Article  Google Scholar 

  9. C. Burgess, T. Frost (Eds.): Standards and Best Practice in Absorption Spectrometry (Blackwell Science, Oxford 1999)

    Google Scholar 

  10. G. Wyszecki, W.S. Stiles: Color Science, 2nd edn. (Wiley-Interscience, New York 1982)

    Google Scholar 

  11. ISO: International Vocabulary of Basic and General Terms in Metrology (VIM), 2nd ed., (BIPM/IEC/IFCC/ISO/IUPAC/IUPAP/OIML, International Organization for Standardization, Geneva 1993)

    Google Scholar 

  12. ISO: Guide 34, General Requirements for the Competence of Reference Material Producers, 2nd ed., (International Organization for Standardization, Geneva 2000)

    Google Scholar 

  13. ISO: International Standard ISO/IEC 17025, General Requirements for the Competence of Testing and Calibration Laboratories, 1st ed., (International Organization for Standardization, Geneva 1999)

    Google Scholar 

  14. J.R. Lakowicz: Principles of Fluorescence Spectroscopy (Kluwer/Plenum, New York 1999)

    Book  Google Scholar 

  15. ASTM: ASTM Standard E388, Standard test method for wavelength accuracy and spectral bandwidth of fluorescence spectrometers. In: Annual Book of ASTM Standards, Vol. 03.06, (ASTM, West Conshohocken 2004)

    Google Scholar 

  16. K.D. Mielenz (Ed.): Optical radiation measurements. In: Measurement of Photoluminescence, Vol. 3 (Academic, New York 1982) pp. 15–154

    Google Scholar 

  17. J.N. Miller: Techniques in visible and ultraviolet spectrometry. In: Standards in Fluorescence Spectrometry, Vol. 2, ed. by J.N. Miller (Chapman and Hall, New York 1981)

    Chapter  Google Scholar 

  18. R.L. McCreery: Raman Spectroscopy for Chemical Analysis, Chemical Analysis, Vol. 157 (Wiley, New York 2000)

    Google Scholar 

  19. P.R. Griffiths, J.A. de Haseth: Fourier Transform Infrared Spectrometry (Wiley, New York 1986)

    Google Scholar 

  20. P.B. Coleman (Ed.): Practical Sampling Techniques for Infrared Analysis (CRC, Boca Raton 1993)

    Google Scholar 

  21. R.M. Silverstein, F.X. Webster: Spectrometric Identification of Organic Compounds, 6th edn. (Wiley, New York 1998)

    Google Scholar 

  22. D.L. Rabenstein, D.A. Keire: Quantitative analysis by NMR. In: Modern NMR Techniques and Their Application in Chemistry, Vol. 11, ed. by A.I. Popov, K. Hallenga (Dekker, New York 1991), Chap. 5, pp. 323–369

    Google Scholar 

  23. F. Kasler: Quantitative Analysis by NMR Spectroscopy (Academic, New York 1973)

    Google Scholar 

  24. H. Jancke: NMR spectroscopy as a primary analytical method, CCQM Report 98(2), 1–12 (1998)

    Google Scholar 

  25. J.P. Heeschen: Nuclear magnetic resonance spectroscopy. In: The Characterization of Chemical Purity Organic Compounds, ed. by K.L.A. Staveley (International Union of Pure and Applied Chemistry, Butterworth and Co, London 1977) pp. 137–147

    Google Scholar 

  26. D. Filmore: Seeing with spectroscopy. In: Chronicles of Chemistry II: Enterprise of the Chemical Sciences, Supplemental publication of the American Chemical Society, ed. by J.F. Ryan (ACS, Washington 2004) p. 87

    Google Scholar 

  27. J.C. Travis, J.C. Acosta, G. Andor, J. Bastie, P. Blattner, C.J. Chunnilall, S.C. Crosson, D.L. Duewer, E.A. Early, F. Hengstberger, C. Kim, L. Liedquist, F. Manoocheri, F. Mercader, A. Mito, L.A.G. Monard, S. Nevas, M. Nilsson, M. Noël, A.C. Rodriguez, A. Ruíz, A. Schirmacher, M.V. Smith, G. Valencia, N. van Tonder, J. Zwinkels: Intrinsic wavelength standard absorption bands in holmium oxide solutions for UV/visible molecular absorption spectrophotometry, J. Phys. Chem. Ref. Data 34, 41–56 (2005)

    Article  Google Scholar 

  28. R.A. Velapoldi, K.D. Mielenz: A fluorescence standard reference material: Quinine sulfate dihydrate, US Dept. of Commerce, NBS special publication NIST SP 260-64, 122 pp. (1980)

    Google Scholar 

  29. S.J. Choquette, E.E. Etz, W. Hurst, D. Blackburn: Relative intensity correction standards for Raman spectroscopy for excitation with several common laser wavelengths, Am. Pharm. Rev. 6(2), 74–80 (2003)

    Google Scholar 

  30. S.J. Choquette, S.N. Chesler, D.L. Duewer, S. Wang, T.C. OʼHaver: Identification and quantitation of oxygenates in gasoline ampules using FT-NIR and FT-Raman spectroscopy, Anal. Chem. 68(20), 3525 (1996)

    Article  Google Scholar 

  31. L. Griffiths, A.M. Irving: Assay by nuclear magnetic resonance spectroscopy: Quantification limits, Analyst 123, 1061–1068 (1998)

    Article  Google Scholar 

  32. National Institute of Standards and Technology (2010), http://nist.gov/traceability/

  33. National Institute of Standards and Technology: NIST Physics Laboratory, Optical Technology Division (2011), http://nist.gov/pml/div685

  34. National Institute of Standards and Technology: NIST calibration services website (2010), http://nist.gov/mean-services

  35. J.D. Ingle Jr., S.R. Crouch: Spectrochemical Analysis (Prentice Hall, Englewood Cliffs 1988)

    Google Scholar 

  36. J.R. Dean, D.J. Ando (Eds.): Atomic Absorption and Plasma Spectroscopy (Wiley, New York 1997)

    Google Scholar 

  37. A. Montaser, D.W. Golightly (Eds.): Inductively Coupled Plasmas in Analytical Atomic Spectrometry, 2nd edn. (Wiley-VCH, Weinheim 1992)

    Google Scholar 

  38. R.D. Sacks: Emission spectroscopy. In: Treatise on Analytical Chemistry Vol. 7, 2nd edn., ed. by I.M. Kolthoff, P.J. Elving (Wiley-Interscience, New York 1981) Chap. 6

    Google Scholar 

  39. R.K. Marcus (Ed.): Glow Discharge Spectroscopies (Plenum, New York 1993) p. 514

    Google Scholar 

  40. R. Payling, D. Jones, A. Bengtson (Eds.): Glow Discharge Optical Emission Spectrometry (Wiley, Chichester 1997) p. 846

    Google Scholar 

  41. R.K. Marcus, J.A.C. Broekaert (Eds.): Glow Discharge Plasmas in Analytical Spectroscopy (Wiley, Chichester 2003) p. 482

    Google Scholar 

  42. T. Nelis, R. Payling: Glow Discharge Optical Emission Spectroscopy: A Practical Guide, ed. by N.W. Barnett (The Royal Society of Chemistry, Cambridge 2003) p. 211

    Google Scholar 

  43. R. Jenkins: Practical X-Ray Spectrometry, 2nd edn. (Springer, Berlin Heidelberg 1970) p. 190

    Book  Google Scholar 

  44. R.E. Van Grieken, A.A. Markowicz (Eds.): Handbook of X-Ray Spectrometry, 2nd edn. (Dekker, New York 2002) p. 1016

    Google Scholar 

  45. E.P. Bertin: Principles and Practice of X-Ray Spectrometric Analysis, 2nd edn. (Plenum, New York 1975) p. 1079

    Book  Google Scholar 

  46. B. Dziunikowski (Ed.): Energy Dispersive X-Ray Fluorescence Analysis (Elsevier, New York 1989) p. 431

    Google Scholar 

  47. A. Walsh: The application of atomic absorption spectra to chemical analysis, Spectrochim. Acta 27B, 108 (1955)

    Article  Google Scholar 

  48. V.A. Fassel, R.N. Kniseley: Inductively coupled plasma-optical emission spectroscopy, Anal. Chem. 46A, 1110 (1974)

    Google Scholar 

  49. M.R. Winchester, R. Payling: Radio-frequency glow discharge spectrometry: A critical review, Spectrochim. Acta Part B 59, 607–666 (2004)

    Article  Google Scholar 

  50. D. De Soete, R. Gijbels, J. Hoste: Neutron Activation Analysis (Wiley-Interscience, London 1972)

    Google Scholar 

  51. S.J. Parry: Handbook of Neutron Activation Analysis (Viridian, Surrey 2003)

    Google Scholar 

  52. A. Vertes, S. Nagy, Z. Klencsar: Handbook of Nuclear Chemistry, Chemical Applications of Nuclear Reactions and Radiations, Vol. 3, ed. by G.L. Molnar (Kluwer, Dordrecht 2003)

    Google Scholar 

  53. G.L. Molnár, Z. Révay (Eds.): Handbook of Prompt Gamma Activation Analysis with Neutron Beams (Kluwer, Dordrecht 2004)

    Google Scholar 

  54. Z.B. Alfassi, C. Chung (Eds.): Prompt Gamma Neutron Activation Analysis (CRC, Boca Raton 1995)

    Google Scholar 

  55. IAEA: Use of Accelerator Based Neutron Sources, IAEA-TECDOC-1153 (International Atomic Energy Agency, Vienna 2000)

    Google Scholar 

  56. R. Paul: The use of element ratios to eliminate analytical bias in cold neutron prompt gamma-ray activation analysis, J. Radioanal. Nucl. Chem. 191(2), 245–256 (1995)

    Article  Google Scholar 

  57. R.R. Greenberg, R.F. Fleming, R. Zeisler: High sensitivity neutron activation analysis of biological/environmental standard reference materials, Environ. Int. 10, 129 (1984)

    Article  Google Scholar 

  58. R.L. Paul, R.M. Lindstrom: Prompt gamma-ray activation analysis: Fundamentals and applications, J. Radioanal. Nucl. Chem. 243, 181–189 (2000)

    Article  Google Scholar 

  59. W. Goerner, A. Berger, K.H. Ecker, O. Haase, M. Hedrich, C. Segebade, G. Weidemann, G.J. Wermann: Broad band application of combined instrumental photon and neutron activation analysis, Radioanal. Nucl. Chem. 248(1), 45–52 (2001)

    Article  Google Scholar 

  60. ASTM: ASTM E 385–90, Annual Book of ASTM Standards, Vol. 12.02 (ASTM, West Conshohocken 1990)

    Google Scholar 

  61. C. Yonezawa: Prompt-ray analysis of elements using cold and thermal reactor guided neutron beams, Anal. Sci. 9, 185 (1993)

    Article  Google Scholar 

  62. J.F. Ziegler, G.W. Cole, J.E.E. Baglin: Technique for determining concentration profiles of boron impurities in substrates, J. Appl. Phys. 43, 3809 (1972)

    Article  Google Scholar 

  63. J.P. Biersack, D. Fink: Observation of the blocking effect after 6Li (n, t) 4He reactions with thermal neutrons, Nucl. Instrum. Methods 108, 397–399 (1973)

    Article  Google Scholar 

  64. D. Fink: Neutron depth profiling, Reports of the Hahn-Meitner Inst. (HMI)-B 539, 307 (1996)

    Google Scholar 

  65. J.F. Ziegler: The Stopping and Ranges of Ions in Matter (Pergamon, New York 1977)

    Google Scholar 

  66. J.F. Ziegler: Public Domain Computer Code, SRIM-2003 (IBM-Research, Yorktown 2003)

    Google Scholar 

  67. C. Segebade, H.P. Weise, G.J. Lutz: Photon Activation Analysis (Hawthorne, New York 1987)

    Book  Google Scholar 

  68. K. Strijckmans: Chemical Analysis by Nuclear Methods, ed. by Z.B. Alfassi (Wiley, Chichester 1994) Chap. 10, pp. 215–252

    Google Scholar 

  69. S.A.E. Johansson, J.L. Campbell, K.G. Malmqvist: Particle-induced X-ray emission spectroscopy (PIXE). In: Chemical Analysis: A Series of Monographs on Analytical Chemistry and its Applications, Vol. 133, ed. by D. Winfordner (Wiley, Chichester 1995)

    Google Scholar 

  70. S.S. Nagolwalla, E.P. Przybylowicz: Activation Analysis with Neutron Generators (Wiley, New York 1973)

    Google Scholar 

  71. W.D. James, R. Zeisler: Uptake of oxygen in a coal standard reference material® determined by fast (14-MeV) neutron activation analysis, J. Radioanal. Nucl. Chem 248, 233–237 (2001)

    Article  Google Scholar 

  72. W.D. James, M.S. Akanni: IEEE Trans. Nucl. Sci. NS-30, 1610–1613 (1983)

    Google Scholar 

  73. H.M. McNair, J.M. Miller: Basic Gas Chromatography (Wiley-Interscience, New York 1998)

    Google Scholar 

  74. M.C. McMaster: GC/MS: A Practical Userʼs Guide (Wiley-Interscience, New York 1998)

    Google Scholar 

  75. K.J. Hyber (Ed.): High Resolution Gas Chromatography (Hewlett-Packard, Wilmington 1989)

    Google Scholar 

  76. L.R. Snyder, J.J. Kirkland: Introduction to Modern Liquid Chromatography (Wiley Interscience, New York 1979)

    Google Scholar 

  77. L.R. Snyder, J.J. Kirkland, J.L. Glajch: Practical HPLC Method Development (Wiley, New York 1997)

    Book  Google Scholar 

  78. C.F. Poole: The Essence of Chromatography (Elsevier, San Diego 2003)

    Google Scholar 

  79. S.F.Y. Li: Capillary Electrophoresis (Elsevier, New York 1993)

    Google Scholar 

  80. J.W. Jorgenson, K.D. Lukacs: Zone electrophoresis in open-tubular glass capillaries, Anal. Chem. 53, 1298–1302 (1981)

    Article  Google Scholar 

  81. K.D. Altria: Overview of the status and applications of capillary electrophoresis, J. Chromatogr. A 1023, 1–14 (2004)

    Article  Google Scholar 

  82. J.B. Fenn, M. Mann, C.K. Meng, S.F. Wong, C.M. Whitehouse: Electrospray ionization for mass spectrometry of large biomolecules, Science 246, 64 (1989)

    Article  Google Scholar 

  83. S.S.-C. Tai, M.J. Welch: Development and evaluation of a candidate reference method for the determination of total cortisol in human serum using isotope-dilution liquid chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry, Anal. Chem. 76, 1008–1014 (2004)

    Article  Google Scholar 

  84. I.M. Kolthoff, E.B. Sandell, E.J. Meehan, S. Bruckenstein: Quantitative Analysis, 4th edn. (Macmillan, New York 1969)

    Google Scholar 

  85. T.W. Vetter, K.W. Pratt, G.C. Turk, C.M. Beck II., T.A. Butler: Using instrumental techniques to increase the accuracy of the gravimetric determination of sulfate, Analyst 120, 2025–2032 (1995)

    Article  Google Scholar 

  86. T.R. Dulski: A Manual for the Chemical Analysis of Metals (ASTM, West Conshohocken 1996)

    Book  Google Scholar 

  87. C.O. Ingamells: Applied Geochemical Analysis (Wiley-Interscience, New York 1986)

    Google Scholar 

  88. J.R. Moody, T.W. Vetter: Development of the ion exchange-gravimetric method for sodium in serum as a definitive method, J. Res. Natl. Inst. Stand. 101(2), 155–164 (1996)

    Article  Google Scholar 

  89. 5th CCQM Meeting, p.83, available at http://www.bipm.org/en/committees/cc/ccqm/publications_cc.html

  90. I.M. Kolthoff: Volumetric Analysis, Vol. 3, 2nd edn. (Interscience, New York 1942–1957)

    Google Scholar 

  91. Analytical Chemistsʼ Committee of ICI Ltd.: The standartization of volumetric solutions, Analyst 75, 577–604 (1950)

    Article  Google Scholar 

  92. J. Berčik: Coulometria (Olomouc, Czechoslovakia 1986)

    Google Scholar 

  93. M. Máriássy, L. Vyskočil, A. Mathiasová: Link to the SI via primary direct methods, Accredit. Qual. Assur. 5(10/11), 437–440 (2000)

    Google Scholar 

  94. K.W. Pratt: High-precision couloumetry. 1. Engineering and instrumentation, Anal. Chim. Acta 294, 125–134 (1994)

    Article  Google Scholar 

  95. G. Marinenko, J.K. Taylor: Precise coulometric titrations of potassium dichromate, J. Res. Natl. Inst. Stand. 67A(5), 453–459 (1963)

    Article  Google Scholar 

  96. IUPAC Commission: Atomic weights of the elements 2001, Pure Appl. Chem. 75(8), 1107–1122 (2003)

    Google Scholar 

  97. D.C. Joy, A.D. Romig, J.I. Goldstein (Eds.): Principles of Analytical Electron Microscopy (Plenum, New York 1986) pp. 1–306

    Book  Google Scholar 

  98. D.B. Williams, B.C. Carter: Transmission Electron Microscopy: A Textbook for Materials Science (Kluwer/Plenum, New York 1996) pp. 1–306

    Book  Google Scholar 

  99. R.F. Egerton: Electron energy-loss spectroscopy. In: The Electron Microscope (Kluwer/Plenum, New York 1996) pp. 0–306

    Google Scholar 

  100. L. Reimer: Transmission Electron Microscopy (Springer, Berlin Heidelberg 1993) pp. 1–387

    Google Scholar 

  101. J.I. Goldstein, D.E. Newbury, D.C. Joy, C.E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, J. Michael: Scanning Electron Microscopy and X-Ray Microanalysis, 3rd edn. (Plenum, New York 2003)

    Book  Google Scholar 

  102. D.E. Newbury, C.E. Fiori, R.B. Marinenko, R.L. Myklebust, C.R. Swyt, D.S. Bright: Compositional mapping with the electron probe microanalyzer: Part I, Anal. Chem. 62, 1245A–1254A (1990)

    Article  Google Scholar 

  103. D.E. Newbury, C.E. Fiori, R.B. Marinenko, R.L. Myklebust, C.R. Swyt, D.S. Bright: Compositional mapping with the electron probe microanalyzer: Part II, Anal. Chem. 62, 1159A–1166A (1990)

    Article  Google Scholar 

  104. D.B. Williams, J.I. Goldstein, D.E. Newbury (Eds.): X-Ray Spectrometry in Electron Beam Instruments (Plenum, New York 1995)

    Google Scholar 

  105. L. Struder, C. Fiorini, E. Gatti, R. Hartmann, P. Holl, N. Krause, P. Lechner, A. Longoni, G. Lutz, J. Kemmer, N. Meidinger, M. Popp, H. Soltau, C. van Zanthier: High-resolution nondispersive X-ray spectroscopy with state of the art silicon detectors, Mikrochim. Acta (Suppl.) 15, 11 (1998)

    Google Scholar 

  106. J.I. Goldstein, H. Yakowitz, D.E. Newbury, E. Lifshin, J.W. Colby, J.R. Coleman: Practical Scanning Electron Microscopy (Plenum, New York 1974)

    Google Scholar 

  107. D. Briggs, J.T. Grant (Eds.): Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy (Cromwell, Trowbridge 2003)

    Google Scholar 

  108. D. Briggs, M.P. Seah (Eds.): Practical Surface Analysis, Vol. 1: Auger and X-Ray Photoelectron Spectroscopy, 2nd edn. (Wiley, West Sussex 1983)

    Google Scholar 

  109. J.F. Watts, J. Wolstenholme: An Introduction to Surface Analysis by XPS and AES (Wiley, West Sussex 2003)

    Book  Google Scholar 

  110. G.D. Danilatos: Foundations of environmental scanning electron microscopy, Adv. Electron. El. Phys. 71, 109–250 (1988)

    Google Scholar 

  111. G.D. Danilatos: Introduction to the ESEM instrument, Microsc. Res. Tech. 25, 354–361 (1993)

    Article  Google Scholar 

  112. S.A. Wight: Experimental data and model simulations of beam spread in the environmental scanning electron microscope, Scanning 23, 320–327 (2001)

    Article  Google Scholar 

  113. S.A. Wight, C.J. Zeissler: Direct measurement of electron beam scattering in the environmental scanning electron microscope using phosphor imaging plates, Scanning 22, 167–172 (2000)

    Article  Google Scholar 

  114. J.I. Goldstein, D.E. Newbury, P. Echlin, D.C. Joh, A.D. Romig Jr, C.E. Lyman, C. Fiori, E. Lifshin: Scanning Electron Microscopy and X-Ray Microanalysis (Kluwer/Plenum, New York 2003)

    Book  Google Scholar 

  115. E. Griffith, D.E. Newbury (Eds.): Introduction to environmental scanning electron microscopy issue, Scanning 18(7), 465–527 (1996)

    Google Scholar 

  116. D.E. Newbury, E. Griffith (Eds.): Part II of the special issue on environmental scanning electron microscopy, Scanning 19(2), 70 (1997)

    Google Scholar 

  117. E.M. Griffith, G.D. Danilatos (Eds.): Environmental scanning electron-microscopy, microscopy research and technique, Microsc. Res. Tech. 25(5/6), 353–361 (1993)

    Google Scholar 

  118. J.M. Chalmers, P.R. Griffiths (Eds.): Handbook of Vibrational Spectroscopy (Wiley, New York 2002)

    Google Scholar 

  119. I.R. Lewis, H.G.M. Edwards (Eds.): Handbook of Raman Spectroscopy (Dekker, New York 2001)

    Google Scholar 

  120. H.J. Humecki: Practical Guide to Infrared Microspectroscopy (Dekker, New York 1995)

    Google Scholar 

  121. R.L. McCreery: Raman Spectroscopy for Chemical Analysis (Wiley, New York 2000)

    Book  Google Scholar 

  122. H. Kipphardt, R. Matschat, U. Panne: Metrology in Chemistry – A rocky road, Microchim. Acta 162, 35–41 (2008)

    Article  Google Scholar 

  123. H. Kipphardt, R. Matschat: Purity assessment for providing primary standards for elemental determination – A snap shot of international comparability, Microchim. Acta 162, 269–275 (2008), DOI 10.1007/s00604-007-0937-2

    Article  Google Scholar 

  124. H. Kipphardt, R. Matschat, J. Vogl, T. Gusarova, M. Czerwensky, H.-J. Heinrich, A. Hioki, L.A. Konopelko, B. Methven, T. Miura, O. Petersen, G. Riebe, R. Sturgeon, G.C. Turk, L.L. Yu: Purity determination as needed for the realisation of primary standards for elemental determination: status of international comparability, Accredit. Qual. Assur. 15, 29–37 (2010), DOI 10.1007/s00769-009-0557-0

    Article  Google Scholar 

  125. B. Lange, H. Kipphardt, R. Matschat: Enhancement of intensities in glow discharge mass spectrometry by using mixtures of argon and helium as plasma gases, Anal. Bioanal. Chem. 389, 2287–2296 (2007)

    Article  Google Scholar 

  126. R. Matschat, J. Hinrichs, H. Kipphardt: Application of glow discharge mass spectrometry to multielement ultra-trace determination in ultrahigh-purity copper and iron: A calibration approach achieving quantification and traceability, Anal. Bioanal. Chem. 386, 125–141 (2006)

    Article  Google Scholar 

  127. B. Welz, H. Becker-Roß, S. Florek, U. Heitmann: High-Resolution Continuum Source AAS – The better way to do atomic absorption spectrometry (Wiley-VCH, Weinheim 2005)

    Book  Google Scholar 

  128. A. Detcheva, P. Barth, J. Haßler: Calibration possibilities and modifier use in ETV-ICP OES determination of trace and minor elements in plant materials, Anal. Bioanal. Chem. 394, 1485–1495 (2009)

    Article  Google Scholar 

  129. K. Slickers: The automatic atomic emission-spectrometry (Verlag der Brühlschen Universitätsdruckerei, Lahn-Gießen 1992)

    Google Scholar 

  130. G. Staats, S. Noack: Qualitätssicherung in der Analytik; Die Rekonstitution – Eine Methode zur Optimierung der Richtigkeit von Analysen (Verlag Stahleisen GmbH, Düsseldorf 1996)

    Google Scholar 

  131. H. Kipphardt, R. Matschat, O. Rienitz, D. Schiel, W. Gernand, D. Oeter: Traceability system for elemental analysis, Accredit. Qual. Assur. 10, 633–639 (2006)

    Article  Google Scholar 

  132. H. Kipphardt, R. Matschat, U. Panne: Development of SI traceable standards for element determination, Chimia 63, 637–639 (2009)

    Article  Google Scholar 

  133. BAM Federal Institute for Materials Research and Testing, Berlin, http://www.rm-certificates.bam.de/de/certificates/primary_pure_substances/index.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Willie E. May Dr. , Richard R. Cavanagh Dr. , Gregory C. Turk Dr. , Michael Winchester Dr. , John Travis Ph.D. , Melody V. Smith , Paul DeRose Ph.D. , Steven J. Choquette Ph.D. , Gary W. Kramer Ph.D. , John R. Sieber Dr. , Robert R. Greenberg Dr. , Richard Lindstrom , George Lamaze Dr. , Rolf Zeisler Dr. , Michele Schantz Dr. , Lane Sander Ph.D. , Karen W. Phinney Ph.D. , Michael Welch Dr. , Thomas Vetter , Kenneth W. Pratt Dr. , John H. J. Scott , John Small , Scott Wight B.S. , Stephan J. Stranick Ph.D. , Ralf Matschat or Peter Reich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag

About this chapter

Cite this chapter

May, W.E. et al. (2011). Analytical Chemistry. In: Czichos, H., Saito, T., Smith, L. (eds) Springer Handbook of Metrology and Testing. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16641-9_4

Download citation

Publish with us

Policies and ethics