Skip to main content

Abstract

In the general overview on materials and their characteristics, outlined in Sect. 1.3, it has been stated that materials and their characteristics result from the processing of matter. Thus, condensed matter physics is one of the fundamentals for the understanding of materials. The Monte Carlo Method, which is a powerful method in this respect, is presented in this final chapter of the Handbookʼs Part E on Modelling and Simulation Methods as follows:

First, the principles of this simulation technique are introduced

  • Monte Carlo Method: the fundamentals

  • Improved Monte Carlo algorithms

  • Quantum Monte Carlo Method.

Second, the application of the Monte Carlo Method is explained in considering selected areas of materials science.

  • Electronic correlations: antiferromagnetism

  • Perfect conductance of electricity: superconductivity

  • Vortex states in condensed matter physics

  • Quantum critical phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AF:

antiferromagnetism

BBG:

Bragg–Bose glass

BG:

Bose glass

DMRG:

density-matrix renormalization group

DOS:

density of states

GFSR:

generalized feedback shift register

GL:

Ginzburg–Landau

IL:

interstitial liquid

KT:

Kosterlitz–Thouless

LD:

Lawrence–Doniach

LD:

laser device

LD:

laser diode

MC:

Monte Carlo

MD:

molecular dynamics

PIRG:

path-integral renormalization group

RG:

renormalization group

SC:

superconductivity

SSE:

stochastic series expansion

SW:

Swendsen–Wang

TGFSR:

twisted GFSR

VG:

vortex glass

VL:

vortex liquid

WZW:

Wess–Zumino–Witten

References

  1. K. Binder, Q.W. Heermann: Monte Carlo Simulation in Statistical Physics, Springer Series in Solid-State Sciences (Springer, Berlin Heidelberg 1988) p. 80

    Google Scholar 

  2. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller: Equation of state calculations by fast computing machines, J. Chem. Phys. 21, 1087–1092 (1953)

    Article  Google Scholar 

  3. A.M. Ferrenberg, D.P. Landau, Y.J. Wong: Monte Carlo simulations: Hidden errors from “good” random number generators, Phys. Rev. Lett. 69, 3382–3384 (1992)

    Article  Google Scholar 

  4. M. Matsumoto, Y. Kurita: Twisted GFSR generators, ACM Trans. Model. Comput. Siml. 2, 179–194 (1992)

    Article  Google Scholar 

  5. M. Matsumoto, Y. Kurita: Twisted GFSR generators II, ACM Trans. Model. Comput. Siml. 4, 254–266 (1994)

    Article  Google Scholar 

  6. M. Matsumoto, T. Nishimura: Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator, ACM Trans. Model. Comput. Siml. 8, 3–30 (1998)

    Article  Google Scholar 

  7. The source codes in various languages and original articles can be downloaded from the website http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

  8. M. Suzuki: Linear and nonlinear dynamic scaling relations in the renormalization group theory, Phys. Lett. A 58, 435–436 (1976)

    Article  Google Scholar 

  9. M. Suzuki: Static and dynamic finite-size scaling theory based on the renormalization group approach, Prog. Theor. Phys. 83, 1142–1150 (1977)

    Article  Google Scholar 

  10. N. Ito: Non-equilibrium critical relaxation of the three-dimensional Ising model, Physica A 192, 604–616 (1993)

    Article  Google Scholar 

  11. N. Ito, T. Matsuhisa, H. Kitatani: Ferromagnetic transition of ± J Ising spin glass model on square lattice, J. Phys. Soc. Jpn. 67, 1188–1196 (1998)

    Article  Google Scholar 

  12. N. Ito, K. Hukushima, K. Ogawa, Y. Ozeki: Nonequilibrium relaxation of fluctuations of physical quantities, J. Phys. Soc. Jpn. 69, 1931–1934 (2000)

    Article  Google Scholar 

  13. Z.B. Li, L. Schülke, B. Zheng: Dynamic Monte Carlo measurement of critical exponents, Phys. Rev. Lett. 74, 3396–3398 (1995)

    Article  Google Scholar 

  14. Y. Nonomura: New quantum Monte Carlo approach to ground-state phase transitions in quantum spin systems, J. Phys. Soc. Jpn. 67, 5–7 (1998)

    Article  Google Scholar 

  15. Y. Nonomura: New quantum Monte Carlo study of quantum critical phenomena with Trotter-number-dependent finite-size scaling and non-equilibrium relaxation, J. Phys. A 31, 7939–7954 (1998)

    Article  Google Scholar 

  16. T. Nakamura, Y. Ito: A quantum Monte Carlo algorithm realizing an intrinsic relaxation, J. Phys. Soc. Jpn. 72, 2405–2408 (2003)

    Article  Google Scholar 

  17. Y. Ozeki, K. Ogawa, N. Ito: Nonequilibrium relaxation analysis of Kosterlitz–Thouless phase transition, Phys. Rev. E 67, 026007(1–5) (2003)

    Article  Google Scholar 

  18. Y. Ozeki, K. Kasono, N. Ito, S. Miyashita: Nonequilibrium relaxation analysis for first-order phase transitions, Physica A 321, 271–279 (2003)

    Article  Google Scholar 

  19. Y. Iba: Extended ensemble Monte Carlo, Int. J. Mod. Phys. C 12, 623–656 (2001)

    Article  Google Scholar 

  20. A.M. Ferrenberg, R.H. Swendsen: New Monte Carlo technique for studying phase transitions, Phys. Rev. Lett. 61, 2635–2638 (1988)

    Article  Google Scholar 

  21. A.M. Ferrenberg, R.H. Swendsen: Optimized Monte Carlo data analysis, Phys. Rev. Lett. 63, 1195–1198 (1989)

    Article  Google Scholar 

  22. A.M. Ferrenberg, D.P. Landau: Critical behavior of the three-dimensional Ising model: A high-resolution Monte Carlo study, Phys. Rev. B 44, 5081–5091 (1991)

    Article  Google Scholar 

  23. B.A. Berg, T. Neuhaus: Multicanonical algorithms for first order phase transitions, Phys. Lett. B 267, 249–253 (1991)

    Article  Google Scholar 

  24. B.A. Berg, T. Neuhaus: Multicanonical ensemble: A new approach to simulate first-order phase transitions, Phys. Rev. Lett. 68, 9–12 (1992)

    Article  Google Scholar 

  25. J. Lee: New Monte Carlo algorithm: Entropic sampling, Phys. Rev. Lett. 71, 211–214 (1993)

    Article  Google Scholar 

  26. P.M.C. de Oliveira, T.J.P. Penna, H.J. Herrmann: Broad histogram method, Braz. J. Phys. 26, 677–683 (1996)

    Google Scholar 

  27. P.M.C. de Oliveira, T.J.P. Penna, H.J. Herrmann: Broad histogram Monte Carlo, Eur. Phys. J. B 1, 205–208 (1998)

    Article  Google Scholar 

  28. R.H. Swendsen, B. Diggs, J.-S. Wang, S.-T. Li, C. Genovese, J.B. Kadane: Transition matrix Monte Carlo, Int. J. Mod. Phys. C 10, 1563–1569 (1999)

    Article  Google Scholar 

  29. J.-S. Wang, T.K. Tay, R.H. Swendsen: Transition matrix Monte Carlo reweighting and dynamics, Phys. Rev. Lett. 82, 476–479 (1999)

    Article  Google Scholar 

  30. J.-S. Wang: Flat histogram Monte Carlo method, Physica A 281, 147–150 (2000)

    Article  Google Scholar 

  31. F. Wang, D.P. Landau: Efficient, multiple-range random walk algorithm to calculate the density of states, Phys. Rev. Lett. 86, 2050–2053 (2001)

    Article  Google Scholar 

  32. F. Wang, D.P. Landau: Determining the density of states for classical statistical models: A random walk algorithm to produce a flat histogram, Phys. Rev. E 64, 1–16 (2001)

    Google Scholar 

  33. J. Lee, J.M. Kosterlitz: New numerical method to study phase transitions, Phys. Rev. Lett. 65, 137–140 (1990)

    Article  Google Scholar 

  34. J. Lee, J.M. Kosterlitz: Finite-size scaling and Monte Carlo simulations of first-order phase transitions, Phys. Rev. B 43, 3265–3277 (1991)

    Article  Google Scholar 

  35. R.H. Swendsen, J.-S. Wang: Nonuniversal critical dynamics in Monte Carlo simulations, Phys. Rev. Lett. 58, 86–88 (1987)

    Article  Google Scholar 

  36. P.W. Kasteleyn, C.M. Fortuin: Phase transitions in lattice systems with random local properties, J. Phys. Soc. Jpn. Suppl. 26, 11–14 (1969)

    Google Scholar 

  37. C.M. Fortuin, P.W. Kasteleyn: On the random cluster model. I: Introduction and relation to other models, Physica 57, 536–564 (1972)

    Article  Google Scholar 

  38. U. Wolff: Collective Monte Carlo updating for spin systems, Phys. Rev. Lett. 62, 361–364 (1989)

    Article  Google Scholar 

  39. P. Tamayo, R.C. Brower, W. Klein: Single-cluster Monte-Carlo dynamics for the Ising-model, J. Stat. Phys. 58, 1083–1094 (1990)

    Article  Google Scholar 

  40. H.G. Evertz, G. Lana, M. Marcu: Cluster algorithm for vertex models, Phys. Rev. Lett. 70, 875–879 (1993)

    Article  Google Scholar 

  41. J. Machta, Y.S. Choi, A. Lucke, T. Schweizer, L.V. Chayes: Invaded cluster algorithm for equilibrium critical points, Phys. Rev. Lett. 75, 2792–2795 (1995)

    Article  Google Scholar 

  42. J. Machta, Y.S. Choi, A. Lucke, T. Schweizer, L.V. Chayes: Invaded cluster algorithm for Potts models, Phys. Rev. E 54, 1332–1345 (1996)

    Article  Google Scholar 

  43. Y. Tomita, Y. Okabe: Probability-changing cluster algorithm for Potts models, Phys. Rev. Lett. 86, 572–575 (2001)

    Article  Google Scholar 

  44. N. Prokofʼev, B. Svistunov: Worm algorithms for classical statistical models, Phys. Rev. Lett. 87, 160601(1–4) (2001)

    Google Scholar 

  45. F. Matsubara, T. Iyota, S. Inawashiro: Dynamical simulation of the Heisenberg spin glass in three dimensions, J. Phys. Soc. Jpn. 60, 41–44 (1991)

    Article  Google Scholar 

  46. F. Matsubara, T. Iyota: Hybrid Monte-Carlo spin-dynamics simulation of short-range ± J Heisenberg models with and without anisotropy, Prog. Theor. Phys. 90, 471–498 (1993)

    Article  Google Scholar 

  47. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi: Optimization by simulated annealing, Science 220, 671–680 (1983)

    Article  Google Scholar 

  48. E. Marinari, G. Parisi: Simulated tempering: A new Monte Carlo scheme, Europhys. Lett. 19, 451–458 (1992)

    Article  Google Scholar 

  49. W. Kerler, P. Rehberg: Simulated-tempering procedure for spin-glass simulations, Phys. Rev. E 50, 4220–4225 (1994)

    Article  Google Scholar 

  50. K. Hukushima, K. Nemoto: Exchange Monte Carlo method and application to spin glass simulations, J. Phys. Soc. Jpn. 65, 1604–1608 (1996)

    Article  Google Scholar 

  51. R.H. Swendsen, J.-S. Wang: Replica Monte Carlo simulation of spin-glasses, Phys. Rev. Lett. 57, 2607–2609 (1986)

    Article  Google Scholar 

  52. J.-S. Wang, R.H. Swendsen: Replica Monte Carlo simulation (revisited), Prog. Theor. Phys. Suppl. 157, 317–323 (2005)

    Article  Google Scholar 

  53. M. Suzuki: Quantum Monte Carlo methods in Condensed Matter Physics, ed. by M. Suzuki (World Scientific, Singapore 1993)

    Google Scholar 

  54. M. Suzuki: Relationship between d-dimensional quantal spin systems and (d+1)-dimensional Ising systems — equivalence, critical exponents and systematic approximants of the partition function and spin correlations, Prog. Theor. Phys. 56, 1454–1469 (1976)

    Article  Google Scholar 

  55. M. Suzuki: Generalized Trotters formula and systematic approximants of exponential operators and inner derivations with applications to many-body problems, Commun. Math. Phys. 51, 183–190 (1976)

    Article  Google Scholar 

  56. M. Suzuki: General theory of higher-order decomposition of exponential operators and symplectic integrators, Phys. Lett. A 165, 387–395 (1992)

    Article  Google Scholar 

  57. M. Suzuki: General nonsymmetric higher-order decomposition of exponential operators and symplectic integrators, J. Phys. Soc. Jpn. 61, 3015–3019 (1992)

    Article  Google Scholar 

  58. J.E. Hirsch, R.L. Sugar, D.J. Scalapino, R. Blankenbecler: Monte Carlo simulations of one-dimensional fermion systems, Phys. Rev. B 26, 5033–5055 (1982)

    Article  Google Scholar 

  59. H. De Raedt, A. Lagendijk: Monte-Carlo simulation of quantum statistical lattice models, Phys. Rep. 127, 233–307 (1985)

    Article  Google Scholar 

  60. M. Suzuki: Quantum Monte Carlo Methods in Equilibrium and Nonequilibrium Systems, ed. by M. Suzuki (Springer, Berlin Heidelberg 1987)

    Google Scholar 

  61. M. Suzuki, S. Miyashita, A. Kuroda: Monte Carlo simulation of quantum spin systems I, Prog. Theor. Phys. 58, 1377–1387 (1977)

    Article  Google Scholar 

  62. T. Sakaguchi, K. Kubo, S. Takada: Monte Carlo simulation for the in-plane susceptibility of 1-D spin 1/2 and 1 XY model, J. Phys. Soc. Jpn. 54, 861–864 (1985)

    Article  Google Scholar 

  63. S. Miyashita: Thermodynamic properties of spin 1/2 antiferromagnetic Heisenberg model on the square lattice, J. Phys. Soc. Jpn. 57, 1934–1946 (1988)

    Article  Google Scholar 

  64. M. Suzuki: Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations, Phys. Lett. A 146, 319–323 (1990)

    Article  Google Scholar 

  65. M. Suzuki: General theory of fractal path integrals with applications to many-body theories and statistical physics, J. Math. Phys. 32, 400–407 (1991)

    Article  Google Scholar 

  66. H.G. Evertz: The loop algorithm, Adv. Phys. 52, 1–66 (2003)

    Article  Google Scholar 

  67. N. Kawashima, K. Harada: Recent developments of world-line Monte Carlo methods, J. Phys. Soc. Jpn. 73, 1379–1414 (2004)

    Article  Google Scholar 

  68. N. Kawashima, J.E. Gubernatis: Dual Monte Carlo and cluster algorithms, Phys. Rev. E 51, 1547–1559 (1995)

    Article  Google Scholar 

  69. N. Kawashima, J.E. Gubernatis: Generalization of the Fortuin–Kasteleyn transformation and its application to quantum spin simulations, J. Stat. Phys. 80, 169–221 (1995)

    Article  Google Scholar 

  70. N. Kawashima: Cluster algorithms for anisotropic quantum spin models, J. Stat. Phys. 82, 131–153 (1996)

    Article  Google Scholar 

  71. N. Kawashima, J.E. Gubernatis, H.G. Evertz: Loop algorithms for quantum simulations of fermion models on lattices, Phys. Rev. B 50, 136–149 (1994)

    Article  Google Scholar 

  72. B.B. Beard, U.-J. Wiese: Simulations of discrete quantum systems in continuous Euclidean time, Phys. Rev. Lett. 77, 5130–5133 (1996)

    Article  Google Scholar 

  73. N. Kawashima, J.E. Gubernatis: Loop algorithms for Monte Carlo simulations of quantum spin systems, Phys. Rev. Lett. 73, 1295–1298 (1994)

    Article  Google Scholar 

  74. S. Todo, K. Kato: Cluster algorithms for general-S quantum spin systems, Phys. Rev. Lett. 87, 047203(1–4) (2001)

    Article  Google Scholar 

  75. V.A. Kashurnikov, N.V. Prokofev, B.V. Svistunov, M. Troyer: Quantum spin chains in a magnetic field, Phys. Rev. B 59, 1162–1167 (1999)

    Article  Google Scholar 

  76. N.V. Prokovʼev, B.V. Svistunov, I.S. Tupitsyn: Exact, complete, and universal continuous-time worldline Monte Carlo approach to the statistics of discrete quantum systems, Sov. Phys. JETP 87, 310–321 (1998)

    Article  Google Scholar 

  77. N.V. Prokofʼev, B.V. Svistunov, I.S. Tupitsyn: “Worm” algorithm in quantum Monte Carlo simulations, Phys. Lett. A 238, 253–257 (1998)

    Article  Google Scholar 

  78. O.F. Syljuåsen, A.W. Sandvik: Quantum Monte Carlo with directed loops, Phys. Rev. E 66, 046701(1–28) (2002)

    Google Scholar 

  79. A.W. Sandvik, J. Kurkijärvi: Quantum Monte Carlo simulation method for spin systems, Phys. Rev. B 43, 5950–5961 (1991)

    Article  Google Scholar 

  80. A.W. Sandvik: Generalization of Handscombʼs quantum Monte-Carlo scheme – Application to the 1-D Hubbard-model, J. Phys. A 25, 3667–3682 (1992)

    Article  Google Scholar 

  81. A.W. Sandvik: Finite-size scaling of the ground-state parameters of the two-dimensional Heisenberg model, Phys. Rev. B 56, 11678–11690 (1997)

    Article  Google Scholar 

  82. A.W. Sandvik: Stochastic series expansion method with operator-loop update, Phys. Rev. B 59, R14157–R14160 (1999)

    Article  Google Scholar 

  83. J.E. Hirsch: Monte Carlo study of the two-dimensional Hubbard model, Phys. Rev. Lett. 51, 1900–1903 (1983)

    Article  Google Scholar 

  84. J.E. Hirsch: Two-dimensional Hubbard model: numerical simulation study, Phys. Rev. B 31, 4403–4419 (1985)

    Article  Google Scholar 

  85. S.R. White, D.J. Scalapino, R.L. Sugar, E.Y. Loh, J.E. Gubernatis, R.T. Scalettar: Numerical study of the two-dimensional Hubbard model, Phys. Rev. B 40, 506–516 (1989)

    Article  Google Scholar 

  86. M. Imada, Y. Hatsugai: Numerical studies on the Hubbard model and the t-J model in one- and two-dimensions, J. Phys. Soc. Jpn. 58, 3752–3780 (1989)

    Article  Google Scholar 

  87. J.E. Hirsch: Discrete Hubbard-Stratonovich transformation for fermion lattice models, Phys. Rev. B 28, 4059–4061 (1983)

    Article  Google Scholar 

  88. J. Kuti: Stochastic method for the numerical study of lattice fermions, Phys. Rev. Lett. 49, 183–186 (1982)

    Article  Google Scholar 

  89. R. Blankenbecler, R.L. Sugar: Projector Monte Carlo method, Phys. Rev. D 27, 1304–1311 (1983)

    Article  Google Scholar 

  90. Y.C. Chen, T.K. Lee: t-J model studied by the power Lanczos method, Phys. Rev. B 51, 6723–6726 (1995)

    Article  Google Scholar 

  91. S. Sorella: Green function Monte Carlo with stochastic reconfiguration, Phys. Rev. Lett. 80, 4558–4561 (1998)

    Article  Google Scholar 

  92. S. Sorella, L. Capriotti: Phys. Rev. B 61, 2599–2612 (2000)

    Article  Google Scholar 

  93. S. Sorella: Generalized Lanczos algorithm for variational quantum Monte Carlo, Phys. Rev. B 64, 024512(1–16) (2001)

    Article  Google Scholar 

  94. H.J.M. van Bemmel, D.F.B. ten Haaf, W. van Saarloos, J.M.J. van Leeuwen, G. An: Fixed-node quantum Monte Carlo method for lattice fermions, Phys. Rev. Lett. 72, 2442–2445 (1994)

    Article  Google Scholar 

  95. D.F.B. ten Haaf, H.J.M. van Bemmel, J.M.J. van Leeuwen, W. van Saarloos, D.M. Ceperley: Proof for an upper bound in fixed-node Monte Carlo for lattice fermions, Phys. Rev. B 51, 13039–13045 (1995)

    Article  Google Scholar 

  96. D.M. Ceperley, B.J. Alder: Ground state of the electron gas by a stochastic method, Phys. Rev. Lett. 45, 566–569 (1980)

    Article  Google Scholar 

  97. D.M. Ceperley, B.J. Alder: Quantum Monte-Carlo, Science 231, 555–560 (1986)

    Article  Google Scholar 

  98. T. Nakamura: Vanishing of the negative-sign problem of quantum Monte Carlo simulations in one-dimensional frustrated spin systems, Phys. Rev. B 57, R3197–R3200 (1998)

    Article  Google Scholar 

  99. S. Chandrasekharan, U.-J. Wiese: Meron-cluster solution of fermion sign problems, Phys. Rev. Lett. 83, 3116–3119 (1999)

    Article  Google Scholar 

  100. S. Chandrasekharan, J. Cox, J.C. Osborn, U.-J. Wiese: Meron-cluster approach to systems of strongly correlated electrons, Nucl. Phys. B 673, 405–436 (2003)

    Article  Google Scholar 

  101. C. Domb, M.S. Green: Phase Transitions and Critical Phenomena, Vol. 3, ed. by C. Domb, M.S. Green (Academic, London 1974)

    Google Scholar 

  102. G.A. Baker Jr. (Ed.): Quantitative Theory of Critical Phenomena (Academic, San Diego 1990)

    Google Scholar 

  103. S.R. White: Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett. 69, 2863–2866 (1992)

    Article  Google Scholar 

  104. S.R. White: Density-matrix algorithms for quantum renormalization groups, Phys. Rev. B 48, 10345–10356 (1993)

    Article  Google Scholar 

  105. T. Nishino: Density matrix renormalization group method for 2-D classical models, J. Phys. Soc. Jpn. 64, 3598–3601 (1995)

    Article  Google Scholar 

  106. R.J. Bursill, T. Xiang, G.A. Gehring: The density matrix renormalization group for a quantum spin chain at non-zero temperature, J. Phys.: Condens. Matter 8, L583–L590 (1996)

    Google Scholar 

  107. N. Shibata: Thermodynamics of the anisotropic Heisenberg chain calculated by the density matrix renormalization group method, J. Phys. Soc. Jpn. 66, 2221–2223 (1997)

    Article  Google Scholar 

  108. X. Wang, T. Xiang: Transfer-matrix density-matrix renormalization-group theory for thermodynamics of one-dimensional quantum systems, Phys. Rev. B 56, 5061–5064 (1997)

    Article  Google Scholar 

  109. K. Maisinger, U. Schollwöck: Thermodynamics of frustrated quantum spin chains, Phys. Rev. Lett. 81, 445–448 (1998)

    Article  Google Scholar 

  110. M. Imada, T. Kashima: Path-integral renormalization group method for numerical study of strongly correlated electron systems, J. Phys. Soc. Jpn. 69, 2723–2726 (2000)

    Article  Google Scholar 

  111. T. Kashima, M. Imada: Path-integral renormalization group method for numerical study on ground states of strongly correlated electronic systems, J. Phys. Soc. Jpn. 70, 2287–2299 (2001)

    Article  Google Scholar 

  112. M. Imada, T. Mizusaki: Quantum-number projection in the path-integral renormalization group method, Phys. Rev. B 69, 125110–1–125110–10 (2004)

    Article  Google Scholar 

  113. T. Kashima, M. Imada: Magnetic and metal-insulator transitions through bandwidth control in two-dimensional Hubbard models with nearest and next-nearest neighbor transfers, J. Phys. Soc. Jpn. 70, 3052–3067 (2001)

    Article  Google Scholar 

  114. H. Morita, S. Watanabe, M. Imada: Nonmagnetic insulating states near the Mott transitions on lattices with geometrical frustration and implications for κ-(ET)2Cu2(CN)3, J. Phys. Soc. Jpn. 71, 2109–2112 (2002)

    Article  Google Scholar 

  115. S. Watanabe, M. Imada: Precise determination of phase diagram for two-dimensional Hubbard model with filling- and bandwidth-control Mott transitions: grand-canonical path-integral renormalization group approach, J. Phys. Soc. Jpn. 73, 1251–1266 (2004)

    Article  Google Scholar 

  116. S.-C. Zhang: A unified theory based on SO(5) symmetry of superconductivity and antiferromagnetism, Science 275, 1089–1096 (1997)

    Article  Google Scholar 

  117. E. Demler, W. Hanke, S.-C. Zhang: SO(5) theory of antiferromagnetism and superconductivity, Rev. Mod. Phys. 76, 909–974 (2004)

    Article  Google Scholar 

  118. K.-S. Liu, M.E. Fisher, D.R. Nelson: Quantum lattice gas and the existence of a supersolid, J. Low. Temp. Phys. 10, 655–683 (1973)

    Article  Google Scholar 

  119. M.E. Fisher, D.R. Nelson: Spin flop, supersolids, and bicritical and tetracritical points, Phys. Rev. Lett. 32, 1350–1353 (1974)

    Article  Google Scholar 

  120. D.R. Nelson, J.M. Kosterlitz, M.E. Fisher: Renormalization-group analysis of bicritical and tetracritical points, Phys. Rev. Lett. 33, 813–817 (1974)

    Article  Google Scholar 

  121. D.R. Nelson, M.E. Fisher, J.M. Kosterlitz: Bicritical and tetracritical points in anisotropic antiferromagnetic systems, Phys. Rev. B 13, 412–432 (1976)

    Article  Google Scholar 

  122. A. Aharony: Comment on “Bicritical and tetracritical phenomena and scaling properties of the SO(5) theory”, Phys. Rev. Lett. 88, 059703(1) (2002), and references therein

    Article  Google Scholar 

  123. X. Hu: Bicritical and tetracritical phenomena and scaling properties of the SO(5) theory, Phys. Rev. Lett. 87 (2001)

    Google Scholar 

  124. X. Hu: Bicritical phenomena and scaling properties of O(5) model, Physica A 321, 71–80 (2003)

    Article  Google Scholar 

  125. E. Arrigoni, W. Hanke: Renormalized SO(5) symmetry in ladders with next-nearest-neighbor hopping, Phys. Rev. Lett. 82, 2115–2118 (1999)

    Article  Google Scholar 

  126. E. Arrigoni, W. Hanke: Critical properties of projected SO(5) models at finite temperatures, Phys. Rev. B 62, 11770–11777 (2000)

    Article  Google Scholar 

  127. X. Hu: Reply to “Comment on ‘Bicritical and tetracritical phenomena and scaling properties of the SO(5) theory’”, Phys. Rev. Lett. 88, 059704(1–4) (2002)

    Google Scholar 

  128. P. Pfeuty, D. Jasnow, M.E. Fisher: Crossover scaling functions for exchange anisotropy, Phys. Rev. B 10, 2088–2112 (1974)

    Article  Google Scholar 

  129. X. Hu, T. Koyama, M. Tachiki: Phase diagram of a superconducting and antiferromagnetic system with SO(5) symmetry, Phys. Rev. Lett. 82, 2568–2571 (1999)

    Article  Google Scholar 

  130. A.A. Abrikosov: On the magnetic properties of superconductors of the second group, Zh. Eksp. Teor. Fiz. 32, 1442 (1957)

    Google Scholar 

  131. A.A. Abrikosov: On the magnetic properties of superconductors of the second group, Sov. Phys. JETP 5, 1174–1182 (1957)

    Google Scholar 

  132. G. Blatter, M.V. Feigelman, V.B. Geshkenbein, A.I. Larkin, V.M. Vinokur: Vortices in high-temperature superconductors, Rev. Mod. Phys. 66, 1125–1388 (1994)

    Article  Google Scholar 

  133. G.W. Crabtree, D.R. Nelson: Vortex physics in high-temperature superconductors, Phys. Today 50, 38–45 (1997)

    Article  Google Scholar 

  134. T. Nattermann, S. Scheidl: Vortex-glass phases in type-II superconductors, Adv. Phys. 49, 607–704 (2000)

    Article  Google Scholar 

  135. E. Brezin, D.R. Nelson, A. Thiaville: Fluctuation effects near Hc2 in type-II superconductors, Phys. Rev. B 31, 7124–7132 (1985)

    Article  Google Scholar 

  136. Y.-H. Li, S. Teitel: Vortex-line-lattice melting, vortex-line cutting, and entanglement in model high-Tc superconductors, Phys. Rev. Lett. 66, 3301–3304 (1991)

    Article  Google Scholar 

  137. R.E. Hetzel, A. Sudb, D.A. Huse: First-order melting transition of an Abrikosov vortex lattice, Phys. Rev. Lett. 69, 518–521 (1992)

    Article  Google Scholar 

  138. P.G. de Gennes: Superconductivity of Metals and Alloys (Addison-Wesley, Redwood City, CA 1966), translated by P.A. Pincus

    Google Scholar 

  139. W.E. Lawrence, S. Doniach: Proceedings of LT12, Tokyo, 1970, ed. by E. Kanda (Keigaku, Tokyo 1971)

    Google Scholar 

  140. X. Hu, S. Miyashita, M. Tachiki: Simulation for the first-order vortex-lattice melting transition in high-Tc superconductors, Physica (Amsterdam) 282-287C, 2057–2058 (1997)

    Google Scholar 

  141. X. Hu, S. Miyashita, M. Tachiki: δ-function peak in the specific heat of high-Tc superconductors: Monte Carlo simulation, Phys. Rev. Lett. 79, 3498–3501 (1997)

    Article  Google Scholar 

  142. X. Hu, S. Miyashita, M. Tachiki: Monte Carlo simulation on the first-order melting transition of high-Tc superconductors in ĉ, Phys. Rev. B 58, 3438–3445 (1998)

    Article  Google Scholar 

  143. S. Miyashita, H. Nishimori, A. Kuroda, M. Suzuki: Monte Carlo simulation and static and dynamic critical behavior of the plane rotator model, Prog. Theo. Phys. 60, 1669–1685 (1978)

    Article  Google Scholar 

  144. A.E. Koshelev: Point-like and line-like melting of the vortex lattice in the universal phase diagram of layered superconductors, Phys. Rev. B 56, 11201–11212 (1997)

    Article  Google Scholar 

  145. A.K. Nguyen, A. Sudbø: Phase coherence and the boson analogy of vortex liquids, Phys. Rev. B 58, 2802–2815 (1998)

    Article  Google Scholar 

  146. P. Olsson, S. Teitel: Correlation lengths in the vortex line liquid of a high-Tc superconductor, Phys. Rev. Lett. 82, 2183–2186 (1999)

    Article  Google Scholar 

  147. X. Hu, M. Tachiki: Possible tricritical point in phase diagrams of interlayer josephson-vortex systems in high-Tc superconductors, Phys. Rev. Lett. 85, 2577–2580 (2000)

    Article  Google Scholar 

  148. K.B. Efetov: Fluctuations in layered superconductors in a parallel magnetic field, Sov. Phys. JETP 49, 905–910 (1979)

    Google Scholar 

  149. B.I. Ivlev, N.B. Kopnin, M.M. Slomaa: Vortex-lattice/vortex-liquid states in anisotropic high-Tc superconductor, Phys. Rev. B 43, 2896–2902 (1991)

    Article  Google Scholar 

  150. B.I. Ivlev, N.B. Kopnin, V.L. Pokrovsky: Shear instability of a vortex lattice in layered superconductors, J. Low. Temp. Phys. 80, 187 (1990)

    Article  Google Scholar 

  151. L.V. Mikheev, E.B. Kolomeisky: Melting of a flux-line fluid confined by CuO2 planes: Lindemann-criterion failure, Phys. Rev. B 43, 10431–10435 (1991)

    Article  Google Scholar 

  152. S.E. Korshunov, A.I. Larkin: Problem of Josephson-vortex-lattice melting in layered superconductors, Phys. Rev. B 46, 6395–6399 (1992)

    Article  Google Scholar 

  153. G. Blatte, B.I. Ivlev, J. Rhyner: Kosterlitz–Thouless transition in the smectic vortex state of a layered superconductor, Phys. Rev. Lett. 66, 2392–2395 (1991)

    Article  Google Scholar 

  154. L. Balents, D.R. Nelson: Fluctuations and intrinsic pinning in layered superconductors, Phys. Rev. Lett. 73, 2618–2621 (1994)

    Article  Google Scholar 

  155. L. Balents, D.R. Nelson: Quantum smectic and supersolid order in helium films and vortex arrays, Phys. Rev. B 52, 12951–12968 (1995)

    Article  Google Scholar 

  156. Y. Iye, S. Nakamura, T. Tamegai: Absence of current direction dependence of the resistive state of high temperature superconductors in magnetic fields, Physica 159C, 433–438 (1989)

    Article  Google Scholar 

  157. W.K. Kwok, U. Welp, G.W. Crabtree, K.G. Vandervoort, R. Hulscher, J.Z. Liu: Direct observation of dissipative flux motion and pinning by twin boundaries in YBa2Cu3O7 − δ single crystals, Phys. Rev. Lett. 64, 966–969 (1990)

    Article  Google Scholar 

  158. W.K. Kwok, J. Fendrich, U. Welp, S. Fleshler, J. Downey, G.W. Crabtree: Suppression of the first order vortex melting transition by intrinsic pinning in YBa2Cu3O7 − δ, Phys. Rev. Lett. 72, 1088–1091 (1994)

    Article  Google Scholar 

  159. X. Hu, M. Tachiki: Decoupled two-dimensional superconductivity and continuous melting transitions in layered superconductors immersed in a parallel magnetic field, Phys. Rev. B 70, 064506(1–13) (2004)

    Google Scholar 

  160. X. Hu, M. Tachiki: Structure and phase transition of josephson vortices in anisotropic high-Tc superconductors, Phys. Rev. Lett. 80, 4044–4047 (1998)

    Article  Google Scholar 

  161. X. Hu: Pinning effects in vortex states of high-Tc superconductors: Monte Carlo simulations, J. Low. Temp. Phys. 131, 979–986 (2003)

    Article  Google Scholar 

  162. X. Hu, M.-B. Luo, Y.-Q. Ma: Density functional theory for freezing transition of vortex-line liquid with periodic layer pinning, Phys. Rev. B 72, 174503(1–6) (2005)

    Google Scholar 

  163. A.I. Larkin: Effect of inhomogeneities on the structure of the mixed state of superconductors, Sov. Phys. JETP 31, 784–786 (1970)

    Google Scholar 

  164. A.I. Larkin, Y.N. Ovchinnikov: Pinning in type II superconductors, J. Low. Temp. Phys. 34, 409–428 (1979)

    Article  Google Scholar 

  165. Y. Imry, S.-K. Ma: Random-field instability of the ordered state of continuous symmetry, Phys. Rev. Lett. 35, 1399–1401 (1975)

    Article  Google Scholar 

  166. T. Nattermann: Scaling approach to pinning: Charge density waves and giant flux creep in superconductors, Phys. Rev. Lett. 64, 2454–2457 (1990)

    Article  Google Scholar 

  167. S.E. Korshunov: Replica symmetry breaking in vortex glasses, Phys. Rev. B 48, 3969–3975 (1993)

    Article  Google Scholar 

  168. T. Giamarchi, P. Le Doussal: Elastic theory of pinned flux lattices, Phys. Rev. Lett. 72, 1530–1533 (1994)

    Article  Google Scholar 

  169. T. Giamarchi, P. Le Doussal: Elastic theory of flux lattices in the presence of weak disorder, Phys. Rev. B 52, 1242–1270 (1995)

    Article  Google Scholar 

  170. T. Giamarchi, P. Le Doussal: Phase diagrams of flux lattices with disorder, Phys. Rev. B 55, 6577–6583 (1997)

    Article  Google Scholar 

  171. P. Olsson, S. Teitel: Disorder driven melting of the vortex line lattice, Phys. Rev. Lett. 87, 137001(1–4) (2001)

    Article  Google Scholar 

  172. Y. Nonomura, X. Hu: Effects of point defects on the phase diagram of vortex states in high-Tc superconductors in the B ∥ c cxis, Phys. Rev. Lett. 86, 5140–5143 (2001)

    Article  Google Scholar 

  173. Y. Nonomura, X. Hu: Crossover behaviors in liquid region of vortex states above a critical point caused by point defects, cond-mat/0302597

    Google Scholar 

  174. Y. Nonomura, X. Hu: Possible Bragg–Bose glass phase in vortex states of high-Tc superconductors with sparse and weak columnar defects, Europhys. Lett. 65, 533–539 (2004)

    Article  Google Scholar 

  175. M.J.P. Gingras, D.A. Huse: Topological defects in the random-field XY model and the pinned vortex lattice to vortex glass transition in type-II superconductors, Phys. Rev. B 53, 15193–15200 (1996)

    Article  Google Scholar 

  176. S. Ryu, A. Kapitulnik, S. Doniach: Field-driven topological glass transition in a model flux line lattice, Phys. Rev. Lett. 77, 2300–2303 (1996)

    Article  Google Scholar 

  177. M.P.A. Fisher: Vortex-glass superconductivity: A possible new phase in bulk high-Tc oxides, Phys. Rev. Lett. 62, 1415–1418 (1989)

    Article  Google Scholar 

  178. M.P.A. Fisher, D.S. Fisher, D.A. Huse: Thermal fluctuations, quenched disorder, phase transitions, and transport in type-II superconductors, Phys. Rev. B 43, 130–159 (1991)

    Article  Google Scholar 

  179. A. van Otterlo, R.T. Scalettar: Phase diagram of disordered vortices from London Langevin simulations, Phys. Rev. Lett. 81, 1497–1500 (1998)

    Article  Google Scholar 

  180. R. Sugano, T. Onogi, K. Hirata, M. Tachiki: The effect of pointlike pinning on vortex phase diagram of Bi2Sr2CaCu2O8 + δ, Physica C 357-360, 428–431 (2001), and references therein

    Article  Google Scholar 

  181. A. Vestergren, J. Lidmar, M. Wallin: Vortex glass transition in a random pinning model, Phys. Rev. Lett. 88, 117004(1–4) (2002)

    Article  Google Scholar 

  182. P. Olsson: Vortex glass transition in a frustrated 3-D XY model with disorder, Phys. Rev. Lett. 91, 077002(1–4) (2003)

    Article  Google Scholar 

  183. J. Lidmar: Amorphous vortex glass phase in strongly disordered superconductors, Phys. Rev. Lett. 91, 097001(1–4) (2003)

    Article  Google Scholar 

  184. F.O. Pfeiffer, H. Rieger: Numerical study of the strongly screened vortex-glass model in an external field, Phys. Rev. B 60, 6304–6307 (1999)

    Article  Google Scholar 

  185. H. Kawamura: Simulation studies on the stability of the vortex-glass order, J. Phys. Soc. Jpn. 69, 29–32 (2000)

    Article  Google Scholar 

  186. T.K. Worthington, M.P.A. Fisher, D.A. Huse, J. Toner, A.D. Marwick, T. Zabel, C.A. Feild, F. Holtzberg: Phys. Rev. B 46, 11854–11861 (1992)

    Article  Google Scholar 

  187. T. Nishizaki, K. Shibata, T. Sasaki, N. Kobayashi: New equilibrium phase diagram of YBa2Cu3Oy under high magnetic fields, Physica C 341-348, 957–960 (2000)

    Article  Google Scholar 

  188. K. Shibata, T. Nishizaki, T. Sasaki, N. Kobayashi: Phase transition in the vortex liquid and the critical endpoint in YBa2Cu3Oy, Phys. Rev. B 66, 214518(1–7) (2002)

    Article  Google Scholar 

  189. J. Kierfeld, V. Vinokur: Dislocations and the critical endpoint of the melting line of vortex line lattices, Phys. Rev. B 61, R14928–14931 (2000)

    Article  Google Scholar 

  190. G.P. Mikitik, E.H. Brandt: Effect of pinning on the vortex-lattice melting line in type-II superconductors, Phys. Rev. B 68, 054509(1–15) (2003)

    Article  Google Scholar 

  191. F. Bouquet, C. Marcenat, E. Steep, R. Calemczuk, W.K. Kwok, U. Welp, G.W. Crabtree, R.A. Fisher, N.E. Phillips, A. Schilling: An unusual phase transition to a second liquid vortex phase in the superconductor YBa2Cu3O7, Nature 411, 448–451 (2001)

    Article  Google Scholar 

  192. M.P.A. Fisher, P.B. Weichman, G. Grinstein, D.S. Fisher: Boson localization and the superfluid-insulator transition, Phys. Rev. B 40, 546–570 (1989)

    Article  Google Scholar 

  193. D.R. Nelson, V.M. Vinokur: Boson localization and pinning by correlated disorder in high-temperature superconductors, Phys. Rev. Lett. 68, 2398–2401 (1992)

    Article  Google Scholar 

  194. D.R. Nelson, V.M. Vinokur: Boson localization and correlated pinning of superconducting vortex arrays, Phys. Rev. B 48, 13060–13097 (1993)

    Article  Google Scholar 

  195. J. Lidmar, M. Wallin: Critical properties of Bose-glass superconductors, Europhys. Lett. 47, 494–500 (1999)

    Article  Google Scholar 

  196. L. Radzihovsky: Resurrection of the melting line in the Bose glass superconductor, Phys. Rev. Lett. 74, 4923–4926 (1995)

    Article  Google Scholar 

  197. T. Giamarchi, P. Le Doussal: Variational theory of elastic manifolds with correlated disorder and localization of interacting quantum particles, Phys. Rev. B 53, 15206–15225 (1996)

    Article  Google Scholar 

  198. C. Zeng, P.L. Leath, D.S. Fisher: Absence of two-dimensional Bragg glasses, Phys. Rev. Lett. 82, 1935–1938 (1999)

    Article  Google Scholar 

  199. S. Tyagi, Y.Y. Goldschmidt: Effects of columnar disorder on flux-lattice melting in high-temperature superconductors, Phys. Rev. B 67, 214501(1–15) (2003)

    Article  Google Scholar 

  200. C. Dasgupta, O.T. Valls: Two-step melting of the vortex solid in layered superconductors with random columnar pins, Phys. Rev. Lett. 91, 127002(1–4) (2003)

    Article  Google Scholar 

  201. C. Dasgupta, O.T. Valls: Melting and structure of the vortex solid in strongly anisotropic layered superconductors with random columnar pins, Phys. Rev. B 69, 214520(1–16) (2004)

    Article  Google Scholar 

  202. M. Kohno, M. Takahashi, M. Hagiwara: Low-temperature properties of the spin-1 antiferromagnetic Heisenberg chain with bond alternation, Phys. Rev. B 57, 1046–1051 (1998)

    Article  Google Scholar 

  203. F.D.M. Haldane: Nonlinear field theory of large-spin Heisenberg antiferromagnets: semiclassically quantized solitons of the one-dimensional easy-axis Néel state, Phys. Rev. Lett. 50, 1153–1156 (1983)

    Article  Google Scholar 

  204. F.D.M. Haldane: Continuum dynamics of the 1-D Heisenberg antiferromagnet: identification with the O(3) nonlinear sigma model, Phys. Lett. A 93, 464–468 (1983)

    Article  Google Scholar 

  205. M.P. Nightingale, H.W. Blöte: Gap of the linear spin-1 Heisenberg antiferromagnet: a Monte Carlo calculation, Phys. Rev. B 33, 659–661 (1986)

    Article  Google Scholar 

  206. M. Takahashi: Spin-correlation function of the S = 1 antiferromagnetic Heisenberg chain at T = 0, Phys. Rev. B 38, 5188–5191 (1988)

    Article  Google Scholar 

  207. Y. Kato, A. Tanaka: Numerical study of the S = 1 antiferromagnetic spin chain with bond alternation, J. Phys. Soc. Jpn. 63, 1277–1280 (1994)

    Article  Google Scholar 

  208. W.J.L. Buyers, R.M. Morra, R.L. Armstrong, M.J. Hogan, P. Gerlach, K. Hirakawa: Experimental evidence for the Haldane gap in a spin-1 nearly isotropic, antiferromagnetic chain, Phys. Rev. Lett. 56, 371–374 (1986)

    Article  Google Scholar 

  209. M. Steiner, K. Kakurai, J.K. Kjems, D. Petitgrand, R. Pynn: Inelastic neutron scattering studies on 1-D near-Heisenberg antiferromagnets: A test of the Haldane conjecture, J. Appl. Phys. 61, 3953–3955 (1987)

    Article  Google Scholar 

  210. I.A. Zaliznyak, L.P. Regnault, D. Petitgrand: Neutron-scattering study of the dynamic spin correlations in CsNiCl3 above Néel ordering, Phys. Rev. B 50, 15824–15833 (1994)

    Article  Google Scholar 

  211. J.P. Renard, M. Verdaguer, L.P. Regnault, W.A.C. Erkelens, J. Rossat-Mignod, W.G. Stirling: Presumption for a quantum energy-gap in the quasi one-dimensional S = 1 Heisenberg-antiferromagnet Ni(C2H8N2)2NO2(ClO4), Europhys. Lett. 3, 945–951 (1987)

    Article  Google Scholar 

  212. I. Affleck: The quantum Hall-effects, σ-models at θ = π and quantum spin chains, Nucl. Phys. B 257, 397–406 (1985)

    Article  Google Scholar 

  213. I. Affleck: Exact critical exponents for quantum spin chains, nonlinear σ-models at θ = π and the quantum Hall-effect, Nucl. Phys. B 265, 409–447 (1986)

    Article  Google Scholar 

  214. I. Affleck, F.D.M. Haldane: Critical theory of quantum spin chains, Phys. Rev. B 36, 5291–5300 (1987)

    Article  Google Scholar 

  215. E. Coronado, M. Drillon, A. Fuertes, D. Beltran, A. Mosset, J. Galy: Structural and magnetic study of Ni2(EDTA)(H2O)4,2H2O - alternating Landé factors in a two-sublattice 1-D system, J. Am. Chem. Soc. 108, 900–905 (1986)

    Article  Google Scholar 

  216. R. Vicente, A. Escuer, J. Ribas, X. Solans: The first nickel(II) alternating chain with two different end-to-end azido bridges, Inorg. Chem. 31, 1726–1728 (1992)

    Article  Google Scholar 

  217. A. Escuer, R. Vicente, J. Ribas, M.S.E. Fallah, X. Solans, M. Font-Badría: Crystal structure and magnetic properties of trans-[Ni(333-tet)(μ-N3)]n (ClO4)n and cis-[Ni(333-tet)(μ-(N3))]n (PF6)n: two novel kinds of structural nickel(II) chains with a single azido bridge. Magnetic behavior of an alternating S = 1 chain with α = 0.46, Inorg. Chem. 33, 1842–1847 (1994)

    Article  Google Scholar 

  218. J.J. Borrás-Almenar, E. Coronado, J. Curely, R. Georges: Exchange alternation and single-ion anisotropy in the antiferromagnetic Heisenberg chain S = 1. Magnetic and thermal properties of the compound Ni2(EDTA)⋅6H2O, Inorg. Chem. 34, 2699–2704 (1995)

    Article  Google Scholar 

  219. A. Escuer, R. Vicente, X. Solans, M. Font-Badría: Crystal structure and magnetic properties of [Ni2(dpt)2(μ-ox)(μ-N3)n] (PF6)n: a new strategy to obtain S = 1 alternating chains, Inorg. Chem. 33, 6007–6011 (1994)

    Article  Google Scholar 

  220. M. Hagiwara, Y. Narumi, K. Kindo, M. Kohno, H. Nakano, R. Sata, M. Takahashi: Experimental verification of the gapless point in the S = 1 antiferromagnetic bond alternating chain, Phys. Rev. Lett. 80, 1312–1315 (1998)

    Article  Google Scholar 

  221. O.A. Starykh, R.R.P. Singh, A.W. Sandvik: Quantum critical scaling and temperature-dependent logarithmic corrections in the spin-half Heisenberg chain, Phys. Rev. Lett. 78, 539–542 (1997)

    Article  Google Scholar 

  222. O.A. Starykh, A.W. Sandvik, R.R.P. Singh: Dynamics of the spin-1/2 Heisenberg chain at intermediate temperatures, Phys. Rev. B 55, 14953–14967 (1997)

    Article  Google Scholar 

  223. N. Furukawa, M. Imada: Two-dimensional Hubbard model – metal insulator transition studied by Monte Carlo calculation, J. Phys. Soc. Jpn. 61, 3331–3354 (1992)

    Article  Google Scholar 

  224. A. Ino, T. Mizokawa, A. Fujimori, K. Tamasaku, H. Eisaki, S. Uchida, T. Kimura, T. Sasagawa, K. Kishio: Chemical potential shift in overdoped and underdoped La2-xSrxCuO_4, Phys. Rev. Lett. 79, 2101–2104 (1997)

    Article  Google Scholar 

  225. N. Harima, A. Fujimori, T. Sugaya, I. Terasaki: Chemical potential shift in lightly doped to overdoped Bi2Sr2Ca1-x RxCu2O8+y (R=Pr, Er), Phys. Rev. B 67, 172501(1–4) (2003)

    Article  Google Scholar 

  226. R.J. Birgeneau, D.R. Gabbe, H.P. Jenssen, M.A. Kastner, P.J. Picone, T.R. Thurston, G. Shirane, Y. Endoh, M. Sato, K. Yamada, Y. Hidaka, M. Oda, Y. Enomoto, M. Suzuki, T. Murakami: Antiferromagnetic spin correlations in insulating, metallic, and superconducting La2-xSrxCuO4, Phys. Rev. B 38, 6614–6623 (1988)

    Article  Google Scholar 

  227. M. Kohno: Ground-state properties of the two-dimensional t-J model, Phys. Rev. B 55, 1435–1441 (1997)

    Article  Google Scholar 

  228. M. Kohno, M. Takahashi: Magnetization process of the spin-1/2 XXZ models on square and cubic lattices, Phys. Rev. B 56, 3212–3217 (1997)

    Article  Google Scholar 

  229. V.J. Emery, S.A. Kivelson, H.Q. Lin: Phase separation in the t-J model, Phys. Rev. Lett. 64, 475–478 (1990)

    Article  Google Scholar 

  230. W.O. Putikka, M.U. Luchini, T.M. Rice: Aspects of the phase diagram of the two-dimensional t-J model, Phys. Rev. Lett. 68, 538–541 (1992)

    Article  Google Scholar 

  231. W.O. Putikka, M.U. Luchini: Limits on phase separation for two-dimensional strongly correlated electrons, Phys. Rev. B 62, 1684–1687 (2000)

    Article  Google Scholar 

  232. P. Prelovšek, X. Zotos: Hole pairing and clustering in the two-dimensional t-J model, Phys. Rev. B 47, 5984–5991 (1993)

    Article  Google Scholar 

  233. E. Dagotto, J. Riera, Y.C. Chen, A. Moreo, A. Nazarenko, F. Alcaraz, F. Ortolani: Superconductivity near phase separation in models of correlated electrons, Phys. Rev. B 49, 3548–3565 (1994)

    Article  Google Scholar 

  234. J. Jaklič, P. Prelovšek: Thermodynamic properties of the planar t-J model, Phys. Rev. Lett. 77, 892–895 (1996)

    Article  Google Scholar 

  235. C.S. Hellberg, E. Manousakis: Phase separation at all interaction strengths in the t-J model, Phys. Rev. Lett. 78, 4609–4612 (1997)

    Article  Google Scholar 

  236. C.S. Hellberg, E. Manousakis: Greenʼs-function Monte Carlo for lattice fermions: application to the t-J model, Phys. Rev. B 61, 11787–11806 (2000)

    Article  Google Scholar 

  237. S.R. White, D.J. Scalapino: Density matrix renormalization group study of the striped phase in the 2-D t-J model, Phys. Rev. Lett. 81, 1272–1275 (1998)

    Article  Google Scholar 

  238. S.R. White, D.J. Scalapino: Energetics of domain walls in the 2-D t-J model, Phys. Rev. Lett. 81, 3227–3230 (1998)

    Article  Google Scholar 

  239. C.T. Shih, Y.C. Chen, T.K. Lee: Revisit phase separation of the two-dimensional t-J model by the power-Lanczos method, J. Phys. Chem. Sol. 62, 1797–1811 (2001)

    Article  Google Scholar 

  240. J.D. Cloizeaux, M. Gaudin: Anisotropic linear magnetic chain, J. Math. Phys. (N.Y.) 7, 1384–1400 (1966)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao Hu Associate Professor , Yoshihiko Nonomura Ph.D. or Masanori Kohno Dr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag

About this chapter

Cite this chapter

Hu, X., Nonomura, Y., Kohno, M. (2011). Monte Carlo Simulation. In: Czichos, H., Saito, T., Smith, L. (eds) Springer Handbook of Metrology and Testing. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16641-9_22

Download citation

Publish with us

Policies and ethics