Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Phase diagrams offer various areas of materials science and technology indispensable information for the comprehension of the properties of materials. The microstructure of solid materials is generally classified according to the size of the constituents – for example, at the electron, atomic, or granular level (Sect. 1.3). Accordingly, fundamental principles like quantum mechanics, statistical mechanics, or thermodynamics are applied individually to describe the physical properties. Phases are important features of material because they characterize homogeneous aggregations of matter with respect to chemical composition and uniform crystal structure. The various functions of a material are closely related to the phases and structures of the materialʼs composition. Therefore, to develop a material with a maximum level of desired functions, it is essential to undertake design of the structure in advance.

Phase diagrams are composed by means of experimental measurements, as well as statistical thermodynamic analysis. The construction of phase diagram calculations based on experiments and thermodynamic analysis are generally referred to as the calculation of phase diagrams (CALPHAD) approach [20.1]. This method provides a very accurate understanding of the properties originating in the macroscopic character of the material under study.

This chapter is organized in three parts:

  • In the first part, a brief outline of the CALPHAD method is summarized.

  • In the second part, the method for deriving the Gibbs free energies incorporating the ab initio calculations is presented in order to clarify the uncertainty of thermodynamic properties for metastable solution phases, taking the Fe–Be-based bcc phase as an example. Some results

for metastable phase equilibria in the Fe–Be,

and Co–Al binary systems are shown.

  • In the third part the application to predict thermodynamic properties of compound phases is discussed. The thermodynamic modeling for the Perovskite carbide with an E21-type structure in the Fe–Al–C, Co–Al–C and Ni–Al–C ternary systems is illustrated, and constructions of phase diagrams are performed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AB:

accreditation body

CALPHAD:

calculation of phase diagrams

CEM:

cluster expansion method

CVM:

cluster variation method

DFT:

discrete Fourier transform

DOS:

density of states

EPMA:

electron probe microanalysis

FLAPW:

full potential linearized augmented plane wave

GGA:

generalized gradient approximation

LSDA:

local spin density approximation

bcc:

body-centered-cubic

fcc:

face-centered cubic

hcp:

hexagonal close packed

References

  1. N. Saunders, A.P. Miodownik: CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide (Elsevier, Oxford 1998)

    Google Scholar 

  2. F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, A.K. Niessen: Cohesion in Metals, Transition Metals Alloys (North-Holland, Amsterdam 1988)

    Google Scholar 

  3. G. Ghosh, C. Kantner, G.B. Olson: Thermodynamic modeling of the Pd–X (X = Ag, Co, Fe, Ni) systems, J. Phase Equil. 20, 295–308 (1999)

    Article  Google Scholar 

  4. M. Hillert, L.-I. Staffansson: The regular solution model for stoichiometric phases and ionic melts, Acta Chem. Scand. 24, 3618–3626 (1970)

    Article  Google Scholar 

  5. W. Oelsen, F. Johannsen, A. Podgornik: Erzmetall 9, 459–469 (1956)

    Google Scholar 

  6. W. Kohn, L.J. Sham: Self-consistent equations including exchange and correlation effects, Phys. Rev. 140, A1133–1138 (1965)

    Article  Google Scholar 

  7. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luiz: WIEN2k, An Augmented Plane Wave and Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Tech. Universit t Wien, Vienna 2001)

    Google Scholar 

  8. J.P. Perdew, K. Burke, Y. Wang: Generalized gradient approximation for the exchange-correlation hole of a many-electron system, Phys. Rev. B 54, 16533–16539 (1996)

    Article  Google Scholar 

  9. H. Ohtani, M. Hasebe: Thermodynamic analysis of phase diagrams by incorporating ab initio energetic calculations into CALPHAD approach, Bull. Iron Steel Inst. Japan 9, 223–229 (2004)

    Google Scholar 

  10. J.W.D. Connolly, A.R. Williams: Density-functional theory applied to phase transformations in transition-metal alloys, Phys. Rev. B 27, 5169–5172 (1983)

    Article  Google Scholar 

  11. H. Ohtani, Y. Takeshita, M. Hasebe: Effect of the order–disorder transition of the bcc structure on the solubility of Be in the Fe–Be binary system, Mater. Trans. 45, 1499–1506 (2004)

    Article  Google Scholar 

  12. F.D. Murnaghan: The compressibility of media under extreme pressures, Proc. Nat. Acad. Sci. USA 30, 244–247 (1944)

    Article  Google Scholar 

  13. M.H.F. Sluiter, Y. Watanabe, D. de Fontaine, Y. Kawazoe: First-principles calculation of the pressure dependence of phase equilibria in the Al–Li system, Phys. Rev. B 53, 6137–6151 (1996)

    Article  Google Scholar 

  14. T. Mohri, Y. Chen: First-principles investigation of L10-disorder phase equilibrium in the Fe–Pt system, Mater. Trans. 43, 2104–2109 (2002)

    Article  Google Scholar 

  15. H. Ino: A pairwise interaction model for decomposition and ordering processes in b.c.c binary alloys and its application to the Fe–Be system, Acta Metall. 26, 827–834 (1978)

    Article  Google Scholar 

  16. T. Takayama, M.Y. Wey, T. Nishizawa: Effect of magnetic transition on the solubility of alloying elements in bcc iron and fcc cobalt, Trans. Japan Inst. Met. 22, 315–325 (1981)

    Article  Google Scholar 

  17. H. Ohtani, Y. Chen, M. Hasebe: Phase separation of the B2 structure accompanied by an ordering in Co–Al and Ni–Al binary systems, Mater. Trans. 45, 1489–1498 (2004)

    Article  Google Scholar 

  18. H. Ohtani, M. Yamano, M. Hasebe: Thermodynamic analysis of the Fe–Al–C ternary system by incorporating ab initio energetic calculations into the CALPHAD approach, ISIJ Intern. 44, 1738–1747 (2004)

    Article  Google Scholar 

  19. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelley: Selected Values of the Thermodynamic Properties of Binary Alloys (ASM, Metals Park 1973)

    Google Scholar 

  20. Y. Kimura, M. Takahashi, S. Miura, T. Suzuki, Y. Mishima: Phase stability and relations of multi-phase alloys based on B2 CoAl and E21 Co_3AlC, Intermet. 3, 413–425 (1995)

    Article  Google Scholar 

  21. M. Palm, G. Inden: Experimental determination of phase equilibria in the Fe–Al–C system, Intermet. 3, 443–454 (1995)

    Article  Google Scholar 

  22. H. Ohtani, M. Yamano, M. Hasebe: Thermodynamic analysis of the Co–Al–C and Ni–Al–C systems by incorporating ab initio energetic calculations into the CALPHAD approach, Comp. Coupling Phase Diag. Thermochem. 28, 177–190 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Ohtani Prof. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag

About this chapter

Cite this chapter

Ohtani, H. (2011). The CALPHAD Method. In: Czichos, H., Saito, T., Smith, L. (eds) Springer Handbook of Metrology and Testing. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16641-9_20

Download citation

Publish with us

Policies and ethics