Skip to main content

Abstract

There is no usage of materials without interaction with the environment. Material–environment interactions are relevant for all types of materials, be they of inorganic or organic in origin. Interactions with the environment can cause damage to materials but also might lead to an improvement of materials properties (e.g. oxidative passivation of aluminium or patina formation on copper surfaces). Interactions with the environment might also occur prior to the usage of materials, i.e. in the production phase. For example, before steel can be used for manufacturing of metal products, iron ore has to be extracted and processed.

The impact of the environment on the processes of the materials cycle (Fig. 1.15) will be discussed in Sect. 15.1.1 of this chapter. An important material–environment interaction, especially for inorganic materials, is corrosion, which has already been addressed in Chap. 12. Also the biological impact on organic and inorganic materials can be manifold and are presented in Chap. 14. Environmental mechanisms that impair the functioning of organic polymeric materials – such as weathering, ultraviolet (UV) radiation, moisture, temperature and high-pH environments – are the topics of Sect. 15.1.2. The influence of materials on the indoor climate and measurement methods to characterize emissions from materials are treated in Sect. 15.2. Fire exhibits a drastic impact on materials; methods to characterize the flammability and fire behavior of materials are discussed in Sect. 15.3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AS:

activation spectrum

ASTM:

American Society for Testing and Materials

BAM:

Federal Institute for Materials Research and Testing, Germany

BSI:

British Standards Institute

CE:

Communauté Européenne

CE:

Conformité Européenne

CE:

capillary electrophoresis

CE:

counter electrode

CEN:

European Committee for Standardization

CEN:

European Standard Organization

CENELEC:

European Electrotechnical Standardization Commission

CFD:

computational fluid dynamics

CI:

carbonyl index

DAD:

diode-array detector

DIN:

Deutsches Institut für Normung

DNPH:

2,4-dinitrophenylhydrazine

EF:

emission factors

ER:

electrical resistance

ETS:

environmental tobacco smoke

EU:

European Union

FAA:

Federal Aviation Administration

FAA:

Federal Aviation Authority

FAR:

Federal Aviation Regulations

FLEC:

field and laboratory emission cell

FMVSS:

Federal Motor Vehicle Safety Standards

FP:

fire protection

FRP:

fibre-reinforced plastics

FTP:

fire test procedure

GC/MS:

gas-chromatography mass spectrometry

GC:

gas chromatography

GDP:

gross domestic product

HPLC:

high-performance liquid chromatography

HRR:

Hutchinson–Rice–Rosengren

HRR:

heat release rate

IAQ:

indoor air quality

IEC:

International Electrotechnical Commission

IMO:

International Maritime Organization

IR:

infrared

ISO:

International Organization for Standardization

LD:

Lawrence–Doniach

LD:

laser device

LD:

laser diode

MIBK:

methylisobutylketone

MS:

magnetic stirring

MS:

mass spectrometry

NFPA:

National Fire Protection Association

NIST:

National Institute of Standards and Technology

OSU:

Ohio State University

PA:

polyamide

PC:

personal computer

PC:

photoconductive detector

PC:

polycarbonate

PE-HD:

high-density polyethylene

PE:

polyethylene

POM:

particulate organic matter

PU:

polyurethane

PUF:

polyurethane foam

PVC:

polyvinyl chloride

RH:

relative humidity

SBI:

single burning item

SBS:

sick-building syndrome

SEC:

specific energy consumption

SER:

specific emission rate

SOLAS:

safety of life at sea

SP:

Swedish National Testing and Research Institute

SS:

spectral sensitivity

SVOC:

semi-volatile organic compound

TMR:

tunnel magneto-resistance

TVOC:

total volatile organic compound

TXIB:

2,2,4-trimethyl-1,3-pentanediol diisobutyrate

UIC:

Union Internationale des Chemins de Fer

UV:

ultraviolet

VOC:

volatile organic carbon

VVOC:

very volatile organic compound

References

  1. G. Matos, L. Wagner: Consumption of materials in the United States 1900–1995, Annu. Rev. Energy Environ. 23, 107–122 (1998)

    Article  Google Scholar 

  2. T. Kelly, D. Buckingham, C. DiFrancesco, K. Porter, T. Goonan, J. Sznopek, C. Berry, M. Crane: Historical Statistics for Mineral and Material Commodities in the United States, US Geological Survey, Open-File Report 01-006 (Reston 2004)

    Google Scholar 

  3. W.D. Menzie, J.H. DeYoung, W.G. Steblez: Some Implications of changing patterns of minerals consumption, US Geological Survey, Open-File Report 03-382 (Reston 2000)

    Google Scholar 

  4. T.E. Graedel, B.R. Allenby: Design for the Environment (Prentice Hall, Upper Saddle River 1998)

    Google Scholar 

  5. A.K. Bhaktavatsalam, R. Choudhury: Specific energy consumption in the steel industry, Energy Fuels 20(12), 1247–1250 (1995)

    Google Scholar 

  6. World Steel Association: 2008 Sustainability Report of World Steel Industry (World Steel Association, Brussels 2008), www.worldsteel.org

    Google Scholar 

  7. World Steel Association: World Steel in Figures (World Steel Association, Brussels 2009), www.worldsteel.org

    Google Scholar 

  8. A. Adriaanse, S. Bringezu, A. Hammond, Y. Moriguchi, E. Rodenburg, D. Rogisch, H. Schütz: Resource flows: The material basis of industrial economies (World Resource Institute (WRI), Washington 1997)

    Google Scholar 

  9. K. Halada, K. Ijima, N. Katagiri, T. Okura: An approximate estimation of total materials requirement of metals, J. Jpn. Inst. Met. 65(7), 564–570 (2001)

    Google Scholar 

  10. F. Schmidt-Bleek: Das MIPS-Konzept (Droemer Knaur, München 1998)

    Google Scholar 

  11. S. Bringezu: Towards Sustainable Resource Management in the European Union (Wuppertal-Institute for Climate, Environment, Energy, Wuppertal 2002), paper 121

    Google Scholar 

  12. Five Winds International: Eco-efficiency and Materials (Int. Counc. Met. Environ., Ottawa 2001)

    Google Scholar 

  13. E.U. von Weizsäcker, J.D. Seiler-Hausmann (Eds.): Ökoeffizienz, Management der Zukunft (Birkhäuser, Berlin 1999)

    Google Scholar 

  14. K. Halada, R. Yamamoto: The current status of research and development on ecomaterials around the world, MRS Bull. 26(11), 871–879 (2001)

    Article  Google Scholar 

  15. W. Schnabel: Polymer Degradation: Principles and Practical Applications (Hanser, Munich 1981)

    Google Scholar 

  16. M. Akahori, T. Kajino: A new test method for weatherability prediction by using a remote plasma reactor, Proc. XXVII FATIPEC Congr., Vol. 1 (2004) pp. 1–14

    Google Scholar 

  17. L. Zlatkevich (Ed.): Luminescence Techniques in Solid State Polymer Research (Dekker, New York 1989)

    Google Scholar 

  18. A.M. Striegel: Influence of chain architecture on the mechanochemical degradation of macromolecules, J. Biochem. Biophys. Methods 56, 117–139 (2003)

    Article  Google Scholar 

  19. M.R. Cleland, L.A. Parks, S. Cheng: Applications for radiation processes of materials, Nucl. Instrum. Methods Phys. Res. B 208, 66–73 (2003)

    Article  Google Scholar 

  20. J.-D. Gu: Microbiological deterioration and degradation of synthetic polymeric materials: Recent research advances, Int. Biodeterior. Biodegrad. 52, 69–91 (2003)

    Article  Google Scholar 

  21. G. Menzel, H.-G. Schlüter: Probleme der dynamisch-thermischen Stabilität von Polyvinylchlorid hart, Kunststoffe 65, 295–297 (1975)

    Google Scholar 

  22. J.G. Calvert, J.N. Pitts: Photochemistry (Wiley, New York 1967)

    Google Scholar 

  23. B. Ranby, F.J. Rabek: Photodegradation, Photo-oxidation and Photostabilization of Polymers (Wiley, London 1975)

    Google Scholar 

  24. P. Trubiroha: The spectral sensitivity of polymers in the spectral range of solar radiation. In: Advances in the Stabilization and Controlled Degradation of Polymers, Vol. I, ed. by A.V. Patsis (Technomic, Lancaster 1989) pp. 236–241

    Google Scholar 

  25. A. Geburtig, V. Wachtendorf: Determination of the spectral sensitivity and temperature dependence of polypropylene crack formation caused by UV-irradiation, Polym. Degrad. Stab. 95, 2118–2123 (2010)

    Article  Google Scholar 

  26. N.D. Searle: Wavelength sensitivity of polymers. In: Advances in the Stabilization and Controlled Degradation of Polymers, Vol. I, ed. by A.V. Patsis (Technomic, Lancaster 1989) pp. 62–74

    Google Scholar 

  27. NIST: Preservation of the Declaration of Independence and the Constitution of the United States (NIST, Washington 1951), NBS-Circular No. 505

    Google Scholar 

  28. G. Kämpf, W. Papenroth: Einflußparameter bei der Kurzbewitterung pigmentierter Kunststoffe und Lacke, Kunststoffe 72, 424–429 (1982)

    Google Scholar 

  29. P. Trubiroha, A. Geburtig, V. Wachtendorf: Determination of the spectral response of polymers, 3rd Int. Symp. Service Life Prediction, Sedona, ed. by J.W. Martin, R.A. Ryntz, R.A. Dickie (Federation of Societies for Coating Technology, Blue Bell 2005) pp. 241–252

    Google Scholar 

  30. G.C. Furneaux, K.J. Ledbury, A. Davis: Photo-oxidation of thick polymer samples – Part I: The variation of photo-oxidation with depth in naturally and artificially weathered low density polyethylene, Polym. Degrad. Stab. 3, 431–435 (1981)

    Article  Google Scholar 

  31. M. Boysen: Untersuchung der Kombination von natürlicher und künstlicher Bewitterung, Kunstst. Fortschr. 5, 209–218 (1980)

    Google Scholar 

  32. P. Trubiroha: Der Einfluß der Luftfeuchte bei der Verfärbung von PVC während der Bewitterung und bei der anschließenden Dunkellagerung, Angew. Makromol. Chem. 158/159, 141–150 (1988)

    Article  Google Scholar 

  33. T. Matsuda, F. Kurihara: The effect of humidity on UV-oxidation of plastic films, Chem. High Polym. 22, 429–434 (1965)

    Google Scholar 

  34. G. Löschau, P. Trubiroha: Influence of UV radiation to the strength of plastics films, Proc. 6th iapri-World Conf., Hamburg (AFTPVA, Paris 2004) pp. 541–551

    Google Scholar 

  35. W.R. Rodgers, G.D. Garner, G.D. Cheever: Study of the attack of acidic solutions on melamine-acrylic basecoat/clearcoat paint systems, J. Coat. Techn. 70, 83–95 (1998)

    Article  Google Scholar 

  36. P. Trubiroha, U. Schulz: The influence of acid precipitations on weathering results, Polym. Polym. Compos. 5, 359–367 (1997)

    Google Scholar 

  37. U. Schulz: Accelerated Testing Nature and Artificial Weathering in the Coatings Industry (Vincentz Network, Hannover 2009)

    Google Scholar 

  38. U. Schulz, K. Jansen, A. Braig: Stabilizers in automotive coatings under acid attack, Macromol. Symp. 187, 835–844 (2002)

    Article  Google Scholar 

  39. U. Schulz, V. Wachtendorf, A. Geburtig: Mildew growth and pinholes on automotive coatings after outdoor weathering in South Florida – A new challenge for developing an appropriate test method, Proc. XXVII FATIPEC Congr. 2004, Vol. 3 (AFTPVA, Paris 2004) pp. 805–815

    Google Scholar 

  40. C.V. Stevani, D.L.A. de Faria, J.S. Porto, D.J. Trindade, E.J.H. Bechara: Mechanism of automotive clearcoat damage by dragonfly eggs investigated by surface enhanced Raman scattering, Polym. Degrad. Stab. 68, 61–66 (2000)

    Article  Google Scholar 

  41. K.B. Chakraborty, G. Scott: The effect of thermal processing on the thermal oxidative and photo-oxidative stability of low density polyethylene, Eur. Polym. J. 13, 731–737 (1977)

    Article  Google Scholar 

  42. G. Wypych: Handbook of Material Weathering, 3rd edn. (ChemTec, New York 2003) p. 3

    Google Scholar 

  43. N.C. Billingham: Localization of oxidation in polypropylene, Makromol. Chem. Macromol. Symp. 28, 145–163 (1989)

    Article  Google Scholar 

  44. G. Kämpf (Ed.): Characterization of Plastics by Physical Methods: Experimental Techniques and Practical Application (Hanser Macmillan, Munich 1986), German edn.: Industrielle Methoden der Kunststoff-Charakterisierung: Eigenschaften polymerer Werkstoffe, physikalische Analysenverfahren (Hanser, München 1996)

    Google Scholar 

  45. J.I. Kroschwitz, M. Howe-Grant, R.E. Kirk, D.F. Othmer: Kirk–Othmer Encyclopedia of Chemical Technology, Supplement (Aerogels-Xylene Polymers): Surface and Interface Analysis, 4th edn. (Wiley, New York 1991)

    Google Scholar 

  46. B.W. Rossiter, R.C. Baetzold (Eds.): Investigations of Surfaces and Interfaces, Part A. Physical Methods of Chemistry, Vol. 9A, 2nd edn. (Wiley, New York 1993)

    Google Scholar 

  47. D.J. Connor, B.A. Sexton, R.S.C. Smart (Eds.): Surface Analysis Methods in Materials Science, Ser. Surf. Sci., Vol. 23 (Springer, Berlin, Heidelberg 1992)

    Google Scholar 

  48. J.C. Riviere (Ed.): Monographs on the physics and chemistry of materials. In: Surface Analytical Techniques (Oxford Univ. Press, New York 1990)

    Google Scholar 

  49. R. Holm, S. Storp: Surface and interface analysis in polymer technology: A review, Surf. Interface Anal. 2, 96 (1980)

    Article  Google Scholar 

  50. J.I. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, C. Fiori, E. Lifshin: Scanning Electron Microscopy and X-Ray Microanalysis (Plenum, New York 1981)

    Book  Google Scholar 

  51. L.E. Murr (Ed.): Electron and Ion Microscopy and Microanalysis: Principles and Applications, Opt. Eng., Vol. 29, 2nd edn. (Dekker, New York 1991)

    Google Scholar 

  52. L. Reimer (Ed.): Scanning Electron Microscopy, Springer Ser. Opt. Sci., Vol. 45 (Springer, Berlin, Heidelberg 1985)

    Google Scholar 

  53. L. Reimer (Ed.): Transmission Electron Microscopy, Springer Ser. Opt. Sci., Vol. 36, 3rd edn. (Springer, Berlin, Heidelberg 1993)

    Google Scholar 

  54. R. Kaufmann, F. Hillenkamp: LAMMA and its applications, Ind. Res. Dev. 21(4), 145ff (1979)

    Google Scholar 

  55. R. Kaufmann, F. Hillenkamp, R. Wechsung: Laser microprobe mass analysis, ESN Eur. Spectrosc. News 20, 41 (1978)

    Google Scholar 

  56. K. Siegbahn, C. Nordling, A. Fahlman, H. Hamrin, J. Hedman, G. Johansson, T. Bergmark, S.E. Karlsson, J. Lindgren, B. Lindberg: Electron Spectroscopy for Chemical Analysis – Atomic, Molecular and Solid State Structure Studies by Means of Electron Spectroscopy (Almqvist Wiksell, Stockholm 1967)

    Google Scholar 

  57. G.E. Muilenburg (Ed.): Handbook of X-Ray Photoelectron Spectroscopy. Physical Electronics Div, 2nd edn. (Perkin-Elmer, Norwalk 1993)

    Google Scholar 

  58. D. Briggs, M.P. Seah (Eds.): Practical Surface Analysis – Auger and X-Ray Photoelectron Spectroscopy, 2nd edn. (Wiley Interscience, New York 1990)

    Google Scholar 

  59. D. Briggs, M.P. Seah (Eds.): Practical Surface Analysis: Ion and Neutral Spectrometry, Vol. 2 (Wiley, Chichester 1992)

    Google Scholar 

  60. N.M. Reed, J.C. Vickerman: The Application of Static Secondary Mass Spectrometry (SIMS) to the Surface Analysis of Polymer Materials. In: Surface Characterization of Advanced Polymers, ed. by L. Sabbatini, P.G. Zambonin (Verlag Chemie, Weinheim 1993)

    Google Scholar 

  61. E.P. Bertin: Principles and Practice of X-Ray Spectrometric Analysis (Plenum, New York 1975)

    Book  Google Scholar 

  62. J.G. Grasselli, M.K. Snavely, B.J. Bulkin: Chemical Applications of Raman Spectrometry (Wiley, New York 1981)

    Google Scholar 

  63. R.G. Messerschmidt: Infrared Microspectrometry. Theory and Application (Dekker, New York 1988)

    Google Scholar 

  64. H. Fuchs: Atomic force and scanning tunneling microscopies of organic surfaces, J. Mol. Struct. 292, 29 (1993)

    Article  Google Scholar 

  65. D.A. Hemsley: Applied Polymer Light Microscopy (Elsevier Applied Science, New York 1989)

    Book  Google Scholar 

  66. J.I. Steinfeld: Molecules and Radiation: An Introduction to Modern Molecular Spectroscopy, 2nd edn. (MIT, Cambridge 1978)

    Google Scholar 

  67. B. Wunderlich: Thermal Analysis (Academic, Boston 1990)

    Google Scholar 

  68. W.J. Price: Spectrochemical Analysis by Atomic Absorption (Heyden, London 1979)

    Google Scholar 

  69. K.E. Jarvis, A.L. Gray, R.S. Hook: Handbook of Inductively Coupled Plasma Mass Spectrometry (Blakie, London 1992)

    Book  Google Scholar 

  70. T. Provder (Ed.): Chromatography of Polymers: Characterization by SEC and FFF, ACS Symp. Ser., Vol. 521 (American Chemical Society, Washington 1993)

    Google Scholar 

  71. I. Blakey, B. Goss, G. George: Chemiluminescence as a probe of polymer oxidation, Aust. J. Chem. 59, 485–498 (2006)

    Article  Google Scholar 

  72. V. Wachtendorf, A. Geburtig: Chemiluminescence for the early detection of weathering effects of coatings Part I: Fundamentals, JCT CoatingsTech 7(April), 66–71 (2010)

    Google Scholar 

  73. V. Wachtendorf, A. Geburtig: Chemiluminescence for the early detection of weathering effects of coatings Part II: Experimental setup and examination, JCT CoatingsTech 7(May), 38–44 (2010)

    Google Scholar 

  74. E. Klesper, G. Sielaff: High resolution nuclear magnetic resonance. In: Polymer Spectroscopy, ed. by D.O. Hummel (Verlag Chemie, Weinheim 1974)

    Google Scholar 

  75. D.A.W. Wendisch: Nuclear magnetic resonance in industry, Appl. Spectrosc. Rev. 28, 165 (1993)

    Article  Google Scholar 

  76. H.W. Siesler, K. Holland-Moritz: Infrared and Raman Spectroscopy of Polymers (Dekker, New York 1980)

    Google Scholar 

  77. S.J. Valentry: Polym. Mater. Sci. Eng. 53, 288 (1985)

    Google Scholar 

  78. S. Lai, J. Shen: SPE ANTEC 34, 1258 (1988)

    Google Scholar 

  79. J.W. Martin, J.W. Chin, T. Nguyen: Reciprocity law experiments in polymeric photodegradation: A critical review, Progr. Org. Coat. 47, 292–311 (2003)

    Article  Google Scholar 

  80. P. Trubiroha, A. Geburtig, V. Wachtendorf: The principle of reciprocity and its limits, Proc. 3rd Eur. Weather. Symp. Nat. Artif. Ageing Polym., Krakow (2007) pp. 243–258

    Google Scholar 

  81. European Commission: European Collaborative Action (ECA), Report No. 14, Sampling strategies for volatile organic compounds (VOCs) in indoor air, Report EUR 16051 EN (1994)

    Google Scholar 

  82. World Health Organisation (WHO): Indoor Air Quality – Organic Pollutants, EURO Rep. Studies, Vol. 111 (WHO, Copenhagen 1989)

    Google Scholar 

  83. American Society for Testing and Materials (ASTM): Standard Guide for Small-Scale Environmental Chamber Determination of Organic Emissions from Indoor Materials/Products. ASTM D 5116-10 (ASTM, West Conshohocken 2010)

    Google Scholar 

  84. EN ISO 16000-9: Indoor air – Part 9: Determination of the emission of volatile organic compounds from building products and furnishing – Emission test chamber method (2006)

    Google Scholar 

  85. EN ISO 16000-10: Indoor air – Part 10: Determination of the emission of volatile organic compounds from building products and furnishing – Emission test cell method (2006)

    Google Scholar 

  86. EN ISO 16000-11: Indoor air – Part 11: Determination of the emission of volatile organic compounds from building products and furnishing – Sampling, storage of samples and preparation of test specimens (2006)

    Google Scholar 

  87. Japanese Industrial Standard (JIS): Determination of the emission of volatile organic compounds and aldehydes for building products – Small chamber method. JIS A 1901 (2009)

    Google Scholar 

  88. EN 717-1: Wood-based panels – Determination of formaldehyde release – Part 1: Formaldehyde emission by the chamber method (2004)

    Google Scholar 

  89. American Society for Testing and Materials (ASTM): Standard Test Method for Determining Formaldehyde Concentration in Air from Wood Products Using a Small Scale Chamber, ASTM D 6007-02 (ASTM, West Conshohocken 2008)

    Google Scholar 

  90. American Society for Testing and Materials (ASTM): Standard Practice for Determination of Volatile Organic Compounds (Excluding Formaldehyde) Emissions from Wood-Based Panels Using Small Environmental Chambers Under Defined Test Conditions, ASTM D 6330-98 (ASTM, West Conshohocken 2008)

    Google Scholar 

  91. American Society for Testing and Materials (ASTM): Standard Test Method for Determining Formaldehyde Concentrations in Air and Emission Rates from Wood Products Using a Large Chamber, ASTM E 1333-10 (ASTM, West Conshohocken 2010)

    Google Scholar 

  92. U. Meyer, K. Möhle, P. Eyerer, L. Maresch: Development, construction and start-up of a 1 m3 climate test chamber for the determination of emissions from indoor components, Vol. 54 (Springer, Berlin, Heidelberg 1994) pp. 137–142, Staub – Reinhaltung der Luft (in German)

    Google Scholar 

  93. BAM: Test method for the determination of emissions from hardcopy devices – With respect to awarding the environmental label for office devices RAL-UZ 62, RAL-UZ 85 and RAL-UZ 114. In: Development of a Test Method for and Investigations into Limiting the Emissions from Printers and Copiers within the Framework of Assigning the Environmental Label, ed. by O. Jann, J. Rockstroh, O. Wilke, R. Noske, D. Broedner, U. Schneider, W. Horn (Federal Environmental Agency, Dessau 2003), Res. Report 201 95 311/02, UBA-Texte 88/03

    Google Scholar 

  94. RAL-UZ 114: Office Equipment with Printing Function (Printers, Copiers, Multifunction Devices) (RAL, Sankt Augustin 2009), http://www.blauer-engel.de/en/products_brands/vergabegrundlage.php?id=147

    Google Scholar 

  95. ISO 16000-6, Indoor air – Part 6: Determination of volatile organic compounds in indoor and test chamber air by active sampling on Tenax TA sorbent, thermal desorption and gas chromatography using MS/FID, March (2010)

    Google Scholar 

  96. ISO 16017-1: Indoor, ambiant and workplace air – Sampling and analysis of volatile organic compounds by sorbent tube/thermal desorption/capillary gas chromatography – Part 1: Pumped sampling (ISO, Geneva 2000)

    Google Scholar 

  97. ISO 16000-3: Indoor air – Part 3: Determination of formaldeyhde and other carbonyl compounds; Active sampling method (ISO, Geneva 2001)

    Google Scholar 

  98. O. Jann, O. Wilke: Capability and limitations on the determination of SVOC emissions from materials and products, VDI Reports 1656, 357–367 (2002), (in German)

    Google Scholar 

  99. American Society for Testing and Materials (ASTM): Standard Practice for Sampling and Selection of Analytical Techniques for Pesticides and Polychlorinated Biphenyls in AirASTM designation. ASTM D 4861 (ASTM, West Conshohocken 2005)

    Google Scholar 

  100. Verein Deutscher Ingenieure (VDI): VDI-Richtlinie 4301, Blatt 2. Measurement of indoor air pollution. Measurement of pentachlorophenol (PCP) and gamma-hexachlorocyclohexene (Lindane) – GC/MS method. VDI-Handbuch Reinhaltung der Luft, Vol. 5 (Beuth, Berlin 2000)

    Google Scholar 

  101. W. Horn, O. Jann, O. Wilke: Suitability of small environmental chambers to test the emission of biocides from treated materials into the air, Atmos. Environ. 37, 5477–5483 (2003)

    Article  Google Scholar 

  102. S. Kemmlein, O. Hahn, O. Jann: Emissions of organophosphate and brominated flame retardants from selected consumer products and building materials, Atmos. Environ. 37, 5484–5493 (2003)

    Article  Google Scholar 

  103. O. Wilke, O. Jann, D. Brödner: VOC- and SVOC-emissions from adhesives, floor coverings and complete floor structures, Indoor Air 2002, Proc. 9th Int. Conf. Indoor Air Quality and Climate, Monterey, ed. by H. Levin (Indoor Air, Santa Cruz 2002) pp. 962–967

    Google Scholar 

  104. World Fire Statistics: Information Bulletin of the World Fire Statistics, #20, October 2004

    Google Scholar 

  105. O. Jann, O. Wilke: Sampling and analysis of wood preservatives in test chambers. In: Organic Indoor Air Pollutants. Occurance, Measurement–Evaluation, ed. by T. Salthammer (Wiley, New York 1999) pp. 31–43

    Chapter  Google Scholar 

  106. V. Babrauskas: Ignition Handbook (Fire Science, Issaquak 2003)

    Google Scholar 

  107. J.G. Quintiere: Principals of Fire Behavior (Delmar, Florence 1998)

    Google Scholar 

  108. J.R. Mehaffey, L.R. Richardson, M. Batista, S. Guerguiev: Self-heating and spontaneous ignition of fibreboard insulating panels, Fire Technol. 36(4), 226–235 (2000)

    Article  Google Scholar 

  109. H. Kubler: Heat generating processes as cause of spontaneous ignition in forest products, For. Prod. Abstr. 10(11), 299–327 (1987)

    Google Scholar 

  110. A.R. Horrocks, D. Price (Eds.): Fire Retardant Materials (CRC Woodhead, Cambridge 2001)

    Google Scholar 

  111. M. De Portere, C. Schonbach, M. Simonson: The fire safety of TV set enclosure materials. A survey of European statistics, Fire Mater. 24, 53–60 (2000)

    Article  Google Scholar 

  112. B. Karlsson, J.G. Quintiere: Enclosure Fire Dynamics (CRC, Boca Raton 2000)

    Google Scholar 

  113. EN 1993-1-2, Eurocode 3: Design of steel structures – General rules – Structural fire design (CEN, 2005)

    Google Scholar 

  114. EN 1992-1-2, Eurocode 2: Design of concrete structures – General rules – Structural fire design (CEN, 2004)

    Google Scholar 

  115. EN 1995-1-2, Eurocode 5: Design of timber structures – General rules – Structural fire design (CEN, 2004)

    Google Scholar 

  116. Commission Decision 2000/147/EC of 8 February 2000 implementing Council Directive 89/106/EEC as regards the classification of the reaction to fire performance of construction products, Official Journal of the European Commission, 23.2.2000

    Google Scholar 

  117. U. Wickström, U. Göransson: Full-scale/bench-scale correlations of wall and ceiling linings. In: Heat Release in Fires, ed. by V. Babrauskas, S.J. Grayson (Elsevier, Amsterdam 1992)

    Google Scholar 

  118. Title 49: Transportation §571 302. Standard 302: Flammability of interior materials (valid Sep. 1972), US-Federal Register 36, 232 (1972)

    Google Scholar 

  119. J. Troitzsch (Ed.): Plastic Flammability Handbook (Hanser, Berlin 2004)

    Google Scholar 

  120. Federal Aviation Regulation (FAR): Airworthiness Standards (Department of Transportation, Federal Aviation Administration )

    Google Scholar 

  121. J.A. de Boer: Fire and furnishing in buildings and transport – Statistical data on the existing situation in Europe, Conf. Proc. Fire Furnish. Build. Transp., Luxembourg (CFPA Europe, Stockholm 1990)

    Google Scholar 

  122. State of California: Flammability test procedure for seating furniture for use in public occupancies, Tech. Bull., Vol. 133 (1991)

    Google Scholar 

  123. B. Sundström (Ed.): CBUF Fire Safety of Upholstered Furniture – the Final Report of the CBUF Research Programme (Interscience, London 1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Franz-Georg Simon Dr. , Oliver Jann , Ulf Wickström Prof. , Anja Geburtig , Peter Trubiroha or Volker Wachtendorf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag

About this chapter

Cite this chapter

Simon, FG., Jann, O., Wickström, U., Geburtig, A., Trubiroha, P., Wachtendorf, V. (2011). Material–Environment Interactions. In: Czichos, H., Saito, T., Smith, L. (eds) Springer Handbook of Metrology and Testing. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16641-9_15

Download citation

Publish with us

Policies and ethics