Skip to main content

On Lattice–Based Fuzzy Rough Sets

  • Chapter
35 Years of Fuzzy Set Theory

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 261))

Abstract

Rough sets were originally proposed by Pawlak as a formal tool for analyzing and processing incomplete information represented in data tables. Later on, fuzzy generalizations of rough sets were introduced and investigated to be able to deal with imprecision. In this paper we present L-fuzzy rough sets as a further generalization of rough sets. As an underlying algebraic structure we take an extended residuated lattice, that is a residuated lattice endowed with a De Morgan negation. The signature of these structures gives algebraic counterparts of main fuzzy logical connectives. Properties of L-fuzzy rough sets are presented. We show that under some conditions families of all lower (resp. upper) L-fuzzy rough sets are complete (distributive) lattices. It is also pointed out that in some specific cases lower and upper fuzzy rough approximation operators are L-fuzzy topological operators of interior and closure, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blount, K., Tsinakis, C.: The structure of residuated lattices. Int. J. of Algebra Comput. 13(4), 437–461 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Boixader, D., Jacas, J., Recasens, J.: A new map closely related to the structure of a T–indistinguishability operator. In: Proceedings of the 8th International Conference on Information Processing and Management of Uncertainty in Knowledge–Based Systems IPMU 2000, Madrid, Spain, pp. 841–848 (2000)

    Google Scholar 

  3. Chellas, B.F.: Modal logic: An Introduction. Cambridge University Press, Cambridge (1980)

    MATH  Google Scholar 

  4. De Cock, M., Radzikowska, A.M., Kerre, E.E.: Modelling Linguistic Modifiers using Fuzzy–Rough Structures. In: Proceedings of the 8th International Conference on Information Processing and Management of Uncertainty in Knowledge–Based Systems IPMU 2000, Madrid, Spain, pp. 1735–1742 (2000)

    Google Scholar 

  5. De Cock, M., Radzikowska, A.M., Kerre, E.E.: A fuzzy–rough approach to the representation of linguistic hedges. In: Bouchon–Meunier, B., et al. (eds.) Technologies of Constructing Intelligent Systems, vol. 2, pp. 33–43. Springer, Heidelberg (2002)

    Google Scholar 

  6. Demri, S., Orłowska, E.: Incomplete Information: Structure, Inference, Complexity. EATCS Monographs in Theoretical Computer Science. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  7. Dilworth, R.P., Ward, N.: Residuated lattices. Transactions of the American Mathematical Society 45, 335–354 (1939)

    MATH  MathSciNet  Google Scholar 

  8. Dubois, D., Prade, H.: Rough Fuzzy Sets and Fuzzy Rough Sets. Int. J. of General Systems 17(2-3), 191–209 (1990)

    Article  MATH  Google Scholar 

  9. Dubois, D., Prade, H.: Putting fuzzy sets and rough sets together. In: Słowiński, R. (ed.) Intelligent Decision Support, pp. 203–232. Kluwer Academic, Dordrecht (1992)

    Google Scholar 

  10. Esteva, F., Godo, L.: Monoidal t–norm based logic: towards a logic for left–continuous t–norms. Fuzzy Sets and Systems 124, 271–288 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Esteva, F., Godo, L., Garcia–Cerdana, A.: On the hierarchy of t–norm based residuated fuzzy logics. In: Fitting, M., Orłowska, E. (eds.) Beyond Two: Theory and Applications of Multiple-Valued Logic, Studies in Fuzziness and Soft Computing, vol. 114, pp. 251–272. Physica Verlag, Heidelberg (2003)

    Google Scholar 

  12. Fitting, M.: Many–valued modal logics. Fundamenta Informaticae 15, 235–254 (1991)

    MATH  MathSciNet  Google Scholar 

  13. Fitting, M.: Many–valued modal logics (II). Fundamenta Informaticae 17, 55–73 (1992)

    MATH  MathSciNet  Google Scholar 

  14. Godo, L., Rodriguez, R.O.: A Fuzzy Modal Logic for Similarity Reasoning. In: Chen, G., Ying, M., Cai, K.-Y. (eds.) Fuzzy Logic and Soft Computing, pp. 33–48. Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

  15. Gougen, J.A.: L–fuzzy sets. Journal of Mathematical Analysis and Applications 18, 145–174 (1967)

    Article  MathSciNet  Google Scholar 

  16. Hajek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)

    MATH  Google Scholar 

  17. Hart, J.B., Rafter, L., Tsinakis, C.: The structure of commutative residuated lattices. Int. J. Algebra Comput. 12(4), 509–525 (2001)

    Article  MathSciNet  Google Scholar 

  18. Jipsen, P., Tsinaksis, C.: A Survey of Residuated Lattices. In: Martinez, J. (ed.) Ordered Algebraic Structures, pp. 19–56. Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  19. Kerre, E.E.: Introduction to the basic principles of fuzzy set theory and some of its applications. Communication and Cognition, Gent (1993)

    Google Scholar 

  20. Klir, G.J., Yuan, B.: Fuzzy Logic: Theory and Applications. Prentice–Hall, Englewood Cliffs (1995)

    MATH  Google Scholar 

  21. Orłowska, E. (ed.): Incomplete Information: Rough Set Analysis. Springer, Heidelberg (1998)

    Google Scholar 

  22. Nachtegael, M., Radzikowska, A.M., Kerre, E.E.: On Links between Fuzzy Morphology and Fuzzy Rough Sets. In: Proceedings of the 8th International Conference on Information Processing and Management of Uncertainty in Knowledge–Based Systems IPMU 2000, Madrid, Spain, pp. 1381–1388 (2000)

    Google Scholar 

  23. Nakamura, A.: Fuzzy Rough Sets. Note on Multiple–Valued Logic in Japan 9(8), 1–8 (1988)

    Google Scholar 

  24. Pawlak, Z.: Rough sets. Int. J. of Computer and Information Science 11(5), 341–356 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  25. Pawlak, Z.: Rough Sets – Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  26. Radzikowska, A.M., Kerre, E.E.: Towards studying of fuzzy information relations. In: Proceedings of International Conference in Fuzzy Logics and Technology EUSFLAT 2001, Leicester, UK, pp. 365–369 (2001)

    Google Scholar 

  27. Radzikowska, A.M., Kerre, E.E.: A Comparative Study of Fuzzy Rough Sets. Fuzzy Sets and Systems 126, 137–155 (2001)

    Article  MathSciNet  Google Scholar 

  28. Radzikowska, A.M., Kerre, E.E.: A fuzzy generalisation of information relations. In: Orłowska, E., Fitting, M. (eds.) Beyond Two: Theory and Applications of Multiple–Valued Logics, pp. 264–290. Springer, Heidelberg (2002)

    Google Scholar 

  29. Radzikowska, A.M., Kerre, E.E.: On L–Fuzzy Rough Sets. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 526–531. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  30. Radzikowska, A.M., Kerre, E.E.: Fuzzy rough sets based on residuated lattices. In: Peters, J.F., Skowron, A., Dubois, D., Grzymała-Busse, J.W., Inuiguchi, M., Polkowski, L. (eds.) Transactions on Rough Sets II. LNCS, vol. 3135, pp. 278–297. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  31. Radzikowska, A.M., Kerre, E.E.: Algebraic characterisations of some fuzzy information relations. In: Atanassov, K.T., Hryniewicz, O., Kacprzyk, J. (eds.) Soft Computing: Foundations and Theoretical Aspects, pp. 337–352. Akademicka Oficyna Wydawnicza EXIT, Warsaw (2004)

    Google Scholar 

  32. Radzikowska, A.M., Kerre, E.E.: Lattice–based fuzzy information relations and operators. In: De Baets, B., De Caluve, R., De Tre, G., Fodor, J., Kacprzyk, J., Zadrożny, S. (eds.) Current Issues in Data and Knowledge Engineering, pp. 433–444. Akademicka Oficyna Wydawnicza EXIT, Warsaw (2004)

    Google Scholar 

  33. Radzikowska, A.M., Kerre, E.E.: An algebraic characterisation of fuzzy rough sets. In: Proceedings of IEEE International Conference on Fuzzy Systems FUZZ–IEEE 2004, vol. 1, pp. 115–120 (2004)

    Google Scholar 

  34. Radzikowska, A.M., Kerre, E.E.: Characterisations of main classes of fuzzy relations using fuzzy modal operators. Fuzzy Sets and Systems 152(2), 223–247 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  35. Radzikowska, A.M., Kerre, E.E.: An Algebraic Approach to Fuzzy Modalities. In: Hryniewicz, O., Kacprzyk, J., Kuchta, D. (eds.) Issues in Soft Computing – Decision and Operation Research, pp. 71–86. Akademicka Oficyna Wydawnicza EXIT, Warsaw (2005)

    Google Scholar 

  36. Radzikowska, A.M., Kerre, E.E.: Fuzzy Information Relations and Operators: An Algebraic Approach Based on Residuated Lattices. In: de Swart, H., Orłowska, E., Schmidt, G., Roubens, M. (eds.) TARSKI 2006. LNCS (LNAI), vol. 4342, pp. 162–184. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  37. Rasiowa, H., Sikorski, R.: The Mathematics of Metamathematics. PWN, Warsaw (1970)

    Google Scholar 

  38. Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North Holland, Amsterdam (1983)

    MATH  Google Scholar 

  39. Skowron, A., Polkowski, L.: Rough Sets and Knowledge Discovery, vol. 1, 2. Springer, Heidelberg (1998)

    Google Scholar 

  40. Słowiński, R. (ed.): Intelligent Decision Support – Handbook of Applications and Advances of the Rough Sets Theory. Kluwer Academic Publishers, Dordrecht (1992)

    MATH  Google Scholar 

  41. Thiele, H.: On the definition of modal operators in fuzzy logics. In: Proceedings of International Symposium of Multiple–Valued Logics ISMVL 1993, Sacramento, California, pp. 62–67 (1993)

    Google Scholar 

  42. Thiele, H.: Generalizing the Explicit Concept of Rough Set on the Basis of Modal Logic. In: Reusch, B., Temme, K.-H. (eds.) Computational Intelligence in Theory and Practice, Advances in Soft Computing, pp. 93–120. Physica–Verlag, Heidelberg (2001)

    Google Scholar 

  43. Turunen, E.: Mathematics Behind Fuzzy Logics. Physica–Verlag, Heidelberg (1999)

    Google Scholar 

  44. Wang, X., Ruan, D., Kerre, E.E.: Mathematics of fuzziness – basic issues. Studies in Fuzziness and Soft Computing, vol. 245. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  45. Yao, Y.Y., Wang, S.K.M., Lin, T.Y.: A Review of Rough Set Models. In: Lin, T.Y., Cercone, N. (eds.) Rough Sets and Data Mining: Analysis of Imprecise Data, pp. 47–75. Kluwer Academic Publishers, Dordrecht (1997)

    Google Scholar 

  46. Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338–358 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  47. Ziarko, W.P. (ed.): Rough Sets, Fuzzy Sets and Knowledge Discovery Workshop in Computing. Springer, London (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Radzikowska, A.M. (2010). On Lattice–Based Fuzzy Rough Sets. In: Cornelis, C., Deschrijver, G., Nachtegael, M., Schockaert, S., Shi, Y. (eds) 35 Years of Fuzzy Set Theory. Studies in Fuzziness and Soft Computing, vol 261. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16629-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16629-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16628-0

  • Online ISBN: 978-3-642-16629-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics