Skip to main content

p53, a Molecular Bridge Between Alzheimer’s Disease Pathology and Cancers?

  • Chapter
  • First Online:
Two Faces of Evil: Cancer and Neurodegeneration

Abstract

Cancers are characterized by enhanced cell survival and altered differentiation processes whereas Alzheimer’s disease (AD)-affected brains exhibit exacerbated neuronal loss and cell death. Interestingly, several studies have consistently reported on an inverse relationship between cancer and AD. On the other hand, p53, a tumor-suppressor oncogene, is mutated and inactivated in a majority of human cancers; conversely, several lines of evidence concur to suggest an elevation of p53 and its transcriptional targets in AD brains. Therefore, one could envision p53 as a molecular bridge between cancer and AD pathologies. Although the role of p53 in cancer likely results from its inactivation by somatic mutations, the mechanistic aspects underlying a dysfunction in the control of p53 in AD had not been delineated. Here we survey recent evidence that p53 could control and be controlled by several members of the presenilin-dependent γ-secretase complex, and we briefly discuss the possibility that a functional deficit in presenilins could contribute to the genesis of a subset of tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alves da Costa C, Paitel E, Mattson MP, Amson R, Telerman A, Ancolio K, Checler F (2002) Wild-type and mutated presenilins 2 trigger p53-dependent apoptosis and down-regulate presenilin 1 expression in HEK293 human cells and in murine neurons. Proc Natl Acad Sci USA 99:4043–4048

    Article  PubMed  CAS  Google Scholar 

  • Alves da Costa C, Mattson MP, Ancolio K, Checler F (2003) The C-terminal fragment of presenilin 2 triggers p53-mediated staurosporine-induced apoptosis, a function independent of the presenilinase-derived N-terminal counterpart. J Biol Chem 278:12064–12069

    Article  PubMed  CAS  Google Scholar 

  • Alves da Costa C, Sunyach C, Pardossi-Piquard R, Sevalle J, Vincent B, Boyer N, Kawarai T, Girardot N, St George-Hyslop P, Checler F (2006) Presenilin-dependent gamma-secretase-mediated control of p53-associated cell death in Alzheimer’s disease. J Neurosci 26:6377–6385

    Article  PubMed  CAS  Google Scholar 

  • Ancolio K, Dumanchin C, Barelli H, Warter JM, Brice A, Campion D, Frébourg T, Checler F (1999) Unusual phenotypic alteration of β amyloid precursor protein (βAPP) maturation by a new Val->Met βAPP-770 mutation responsible for probable early-onset Alzheimer's disease. Proc Natl Acad Sci USA 96:4119–4124

    Article  PubMed  CAS  Google Scholar 

  • Araki W, Yuasa K, Takeda S, Shirotani K, Takahashi K, Tabira T (2000) Overexpression of presenilin-2 enhances apoptotic death of cultured cortical neurons. Ann NY Acad Sci 920:241–244

    Article  PubMed  CAS  Google Scholar 

  • Armogida M, Petit A, Vincent B, Scarzello S, da Costa CA, Checler F (2001) Endogenous beta-amyloid production in presenilin-deficient embryonic mouse fibroblasts. Nat Cell Biol 3:1030–1033

    Article  PubMed  CAS  Google Scholar 

  • Behrens MI, Lendon C, Roe CM (2009) A common biological mechanism in cancer and Alzheimer's disease? Curr Alzheimer Res 6:196–204

    Article  PubMed  CAS  Google Scholar 

  • Burdick D, Soreghan B, Kwon M, Kosmoski J, Knauer M, Henschen A, Yates J, Cotman C, Glabe C (1992) Assembly and aggregation properties of synthetic Alzheimer's A4/β amyloid peptide analogs. J Biol Chem 267:546–554

    PubMed  CAS  Google Scholar 

  • Bursztajn S, DeSouza R, McPhie DL, Berman SA, Shioi J, Robakis NK, Neve RL (1998) Overexpression in neurons of human presenilin-1 or a presenilin-1 familial Alzheimer's disease mutant does not enhance apoptosis. J Neurosci 18:9790–9799

    PubMed  CAS  Google Scholar 

  • Campbell WA, Yang H, Zetterberg H, Baulac S, Sears JA, Liu T, Wong STC, Zhong TP, Xia W (2006) Zebrafish lacking Alzheimer presenilin enhancer 2 (Pen-2) demonstrate excessive p53-dependent apoptosis and neuronal loss. J Neurochem 96:1423–1440

    Article  PubMed  CAS  Google Scholar 

  • Carson JA, Turner AJ (2002) β-amyloid catabolism: roles for neprilysin (NEP) and other metallopeptidases. J Neurochem 81:1–8

    Article  PubMed  CAS  Google Scholar 

  • Checler F (1995) Processing of the β-amyloid precursor protein and its regulation in Alzheimer's disease. J Neurochem 65:1431–1444

    Article  PubMed  CAS  Google Scholar 

  • Checler F (1999) Presenilins: multifunctional proteins involved in Alzheimer's disease pathology. Iubmb LIFE 48:33–39

    PubMed  CAS  Google Scholar 

  • Checler F (2001) The multiple paradoxes of presenilins. J Neurochem 76:1621–1627

    Article  PubMed  CAS  Google Scholar 

  • Checler F, Dunys J, Pardossi-Piquard R, Alves da Costa C (2010) p53 is regulated by and regulates members of the gamma-secretase complex. Neurodegener Dis 7:50–55

    Article  PubMed  CAS  Google Scholar 

  • Cotman CW, Anderson AJ (1995) A potential role for apoptosis in neurodegeneration and Alzheimer's disease. Mol Neurobiol 10:19–45

    Article  PubMed  CAS  Google Scholar 

  • Da Costa CA, Sunyach C, Giaime E, West A, Corti O, Brice A, Safe S, Abou-Sleiman PM, Wood NW, Takahashi H, Goldberg MS, Shen J, Checler F (2009) Transcriptional repression of p53 by parkin and impairment by mutations associated with autosomal recessive juvenile Parkinson's disease. Nat Cell Biol 11:1370–1375

    Article  PubMed  Google Scholar 

  • de la Monte S, Sohn YK, Ganju YK, Wands JR (1998) p53- and CD95-associated apoptosis in neurodegenerative diseases. Lab Invest 78:401–411

    PubMed  CAS  Google Scholar 

  • De Strooper B, Saftig P, Craessaerts K, Vanderstichele H, Guhde G, Annaert W, Von Figura K, Van Leuven F (1998) Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391:387–390

    Article  PubMed  Google Scholar 

  • Dunys J, Kawarai T, Sevalle J, Dolcini V, St George-Hyslop P, Alves da Costa C, Checler F (2007) p53-dependent Aph-1 and Pen-2 anti-apoptotic phenotype requires the integrity of the gamma -secretase complex but is independent of its activity. J Biol Chem 282:10516–10525

    Article  PubMed  CAS  Google Scholar 

  • Dunys J, Sevalle J, Giaime E, Pardossi-Piquard R, Vitek MP, Renbaum P, Levy-Lahad E, Zhang YW, Xu H, Checler F, da Costa CA (2009) p53-dependent control of transactivation of the Pen2 promoter by presenilins. J Cell Sci 122:4003–4008

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Ospina GP, Ginenez-del Rio M, Lopera F, Velez-Pardo C (2003) Neuronal DNA damage correlates with a positive detection of c-Jun, nuclear factor κB, p53 and Par-4 transcription factors in Alzheimer's disease. Rev Neurol 36:1004–1010

    PubMed  CAS  Google Scholar 

  • Guo Q, Fu W, Sopher BL, Miller MW, Ware CB, Martin GM, Mattson MP (1999) Increased vulnerability of hippocampal neurons to excitotoxic necrosis in presenilin-1mutant knock-in mice. Nat Med 5:101–106

    Article  PubMed  CAS  Google Scholar 

  • Kang DE, Yoon IS, Repetto E, Busse T, Yermian N, Ie L, Koo EH (2005) Presenilins mediate PI3K/AKT and ERK activation via select signaling receptors: selectivity of PS2 in PDGF signaling. J Biol Chem 280:31537–31547

    Article  PubMed  CAS  Google Scholar 

  • Kitamura Y, Shimohama S, Kamoshima W, Matsuoka Y, Nomura Y, Taniguchi T (1997) Changes of p53 in the brains patients with Alzheimer disease. Biochem Biophys Res Comm 232:418–421

    Article  PubMed  CAS  Google Scholar 

  • Levine AJ, Oren M (2009) The first 30 years of p53: growing ever more complex. Nat Rev Cancer 9:749–758

    Article  PubMed  CAS  Google Scholar 

  • Ohyagi Y, Asahara H, Chui DH, Tsuruta Y, Sakae N, Miyoshi K, Yamada T, Kikuchi H, Taniwaki T, Murai H, Ikezoe K, Furuya H, Kawarabayashi T, Shoji M, Checler F, Iwaki T, Makifuchi T, Takeda K, Kira J, Tabira T (2005) Intracellular Abeta42 activates p53 promoter: a pathway to neurodegeneration in Alzheimer's disease. FASEB J 19:255–257

    PubMed  CAS  Google Scholar 

  • Pardossi-Piquard R, Petit A, Kawarai T, Sunyach C, Alves da Costa C, Vincent B, Ring S, D'Adamio L, Shen J, Muller U, St George Hyslop P, Checler F (2005) Presenilin-dependent transcriptional control of the Abeta-degrading enzyme neprilysin by intracellular domains of betaAPP and APLP. Neuron 46:541–554

    Article  PubMed  CAS  Google Scholar 

  • Pardossi-Piquard R, Dunys J, Giaime E, Guillot-Sestier MV, St George-Hyslop P, Checler F, Alves da Costa C (2009) p53-dependent control of cell death by nicastrin: lack of requirement for presenilin-dependent gamma-secretase complex. J Neurochem 109:225–237

    Article  PubMed  CAS  Google Scholar 

  • Pastorcic M, Das HK (2000) Regulation of transcription of the human presenilin-1 gene by Ets transcription factor and the p53 protooncogene. J Biol Chem 275:34938–34945

    Article  PubMed  CAS  Google Scholar 

  • Roe CM, Behrens MI, Xiong C, Miller JP, Morris JC (2009) Alzheimer disease and cancer. Neurology 64:895–898

    Article  Google Scholar 

  • Roe CM, Fitzpatrick AL, Xiong C, Sieh W, Kuller L, Miller JP, Williams MM, Kopan R, Behrens MI, Morris JC (2010) Cancer linked to Alzheimer disease but not vascular dementia. Neurology 74:106–112

    Article  PubMed  CAS  Google Scholar 

  • Roperch J-P, Alvaro V, Prieur S, Tyunder M, Nemani M, Lethrosne F, Piouffre L, Gendron M-C, Israeli D, Dausset J, Oren M, Amson R, Telerman A (1998) Inhibition of presenilin1 expression is promoted by p53 and p21WAF-1 and results in apoptosis and tumor suppression. Nat Med 4:835–838

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ (1991) The molecular pathology of Alzheimer's disease. Neuron 6:487–498

    Article  PubMed  CAS  Google Scholar 

  • Serneels L, Dejaegere T, Craessaerts K, Horré K, Jorissen E, Tousseyn T, Hébert S, Coolen M, Martens G, Zwijsen A, Annaert W, Hartmann D, De Strooper B (2005) Differential contribution of the three Aph1 genes to g-secretase activity in vivo. Proc Natl Acad Sci USA 102:1719–1724

    Article  PubMed  CAS  Google Scholar 

  • Shimohama S (2000) Apoptosis in Alzheimers' disease- an update. Apoptosis 5:9–16

    Article  PubMed  CAS  Google Scholar 

  • Suh YH, Checler F (2002) Amyloid precursor protein, presenilins, and alpha-synuclein: molecular pathogenesis and pharmacological applications in Alzheimer's disease. Pharmacol Rev 54:469–525

    Article  PubMed  CAS  Google Scholar 

  • Takasugi N, Tomita T, Hayashi I, Tsuruoka M, Niimura M, Takahashi Y, Thinakaran G, Iwatsubo T (2003) The role of presenilin cofactors in the γ-secretase complex. Nature 422:438–441

    Article  PubMed  CAS  Google Scholar 

  • Tournoy J, Bossuyt X, Snellinx A, Regent M, Garmyn M, Serneels L, Saftig P, Craessaerts K, De Strooper B, Hartmann D (2004) Partial loss of presenilins causes seborrheic keratosis and autoimmune disease in mice. Human Mol Gen 13:1321–1331

    Article  CAS  Google Scholar 

  • Van Nguyen V, Hawkins C, Bergeron C, Supala A, Huang J, Westaway D, St George-Hyslop P, Rozmahel R (2006) Loss of nicastrin elicits an apoptotic phenotype in mouse embryos. Brain Res 1086:76–84

    Article  PubMed  CAS  Google Scholar 

  • Vassar R (2001) The β-secretase, BACE. J Mol Neurosci 17:157–170

    Article  PubMed  CAS  Google Scholar 

  • Wilson CA, Doms RW, Lee VM-Y (2003) Distinct presenilin-dependent and presenilin-independent γ-secretases are responsible for total cellular Aβ production. J Neurosci Res 74:361–369

    Article  PubMed  CAS  Google Scholar 

  • Wolozin B, Iwasaki K, Vito P, Ganjei JK, Lacana E, Sunderland T, Zhao B, Kusiak JW, Wasco W, D'Adamio L (1996) Participation of presenilin 2 in apoptosis: enhanced basal activity conferred by an Alzheimer mutation. Science 274:1710–1713

    Article  PubMed  CAS  Google Scholar 

  • Xia X, Qian S, Soriano S, Wu Y, Fletcher AM, Wang XJ, Koo EH, Wu X, Zheng H (2001) Loss of presenilin 1 is associated with enhanced beta-catenin signaling and skin tumorigenesis. Proc Natl Acad Sci USA 98:10863–10868

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Checler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Checler, F., Dunys, J., Pardossi-Piquard, R., Costa, C.A.d. (2011). p53, a Molecular Bridge Between Alzheimer’s Disease Pathology and Cancers?. In: Curran, T., Christen, Y. (eds) Two Faces of Evil: Cancer and Neurodegeneration. Research and Perspectives in Alzheimer's Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16602-0_8

Download citation

Publish with us

Policies and ethics