Skip to main content

On the Robust Control of Systems Preceded by Differential Equation-Based Hysteresis Nonlinearities

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6424))

Included in the following conference series:

  • 3363 Accesses

Abstract

In this paper, a robust control approach for a class of nonlinear systems preceded by unknown hysteresis nonlinearities is addressed. Due to the complexity of the hysteresis characteristics, the hysteresis can not be linearized directly, and the effects caused by the hysteresis will degrade the system performance. Therefore, it is necessary to design an effective controller mitigating the negative effects. In this paper, the unknown hysteresis is represented by a differential equation-based hysteresis model - Duhem model. By exploring the characteristics of the Duhem model, the developed robust controller ensures the global stability of the system without constructing the hysteresis inverse. The effectiveness of the proposed control approach is demonstrated through a simulation example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bessa, W.M.: Some remarks on the boundedness and convergence properties of smooth sliding mode controllers. International Journal of Automation and Computing 6(2), 154–158 (2009)

    Article  Google Scholar 

  2. Brokate, M., Sprekels, J.: Hysteresis and Phase Transitions. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  3. Chen, X., Hisayama, T., Su, C.-Y.: Adaptive control for continuous-time systems preceded by hysteresis. IEEE Trans. Automat. Contr. 53(4), 1019–1025 (2008)

    Article  Google Scholar 

  4. Chua, L.O., Stromsmoe, K.A.: Mathematical model for dynamic hysteresis loops. Int. J. Engng. Sci. 9, 435–450 (1971)

    Article  Google Scholar 

  5. Coleman, B.D., Hodgdon, M.L.: On a class of constitutive relations for ferromagnetic hysteresis. Arch. Rational Mech. Anal., 375–396 (1987)

    Google Scholar 

  6. Duhem, P.: Die dauernden Aenderungen und die Thermodynamik. I, Z. Phys. Chem. 22, 543–589 (1897)

    Google Scholar 

  7. Feng, Y., Hu, Y.-M., Rabbath, C.A., Su, C.-Y.: Robust adaptive control for a class of perturbed strict-feedback nonlinear systems with unknown Prandtl-Ishlinskii hysteresis. International Journal of Control 81(11), 1699–1708 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Krasnosel’skii, M.A., Pokrovskii, A.V.: Systems with Hysteresis. Springer, New York (1989)

    Book  MATH  Google Scholar 

  9. Klein, O., Krejci, P.: Outwards pointing hysteresis operators and asymptotic behaviour of evolution equations. Nonlinear Analysis: Real World Applications 4(5), 755–785 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Krejci, P., Kuhnen, K.: Inverse control of systems with hysteresis and creep. IEE Proc.-Control Theory and Applications 148(3), 185–192 (2001)

    Article  Google Scholar 

  11. Liu, S., Huang, T., Yen, J.: Tracking control of shape-memory-alloy actuators based on self-sensing feedback and inverse hysteresis compensation. Sensor 10, 112–127 (2010)

    Article  Google Scholar 

  12. Macki, J.W., Nistri, P., Zecca, P.: Mathematical models for hysteresis. SIAM Review 35(1), 94–123 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mayergoyz, I.D.: Mathematical Models of Hysteresis. Springer, New York (1991)

    Book  MATH  Google Scholar 

  14. Oh, J., Bernstein, D.S.: Semilinear Duhem model for rate-independent and rate-dependent hysteresis. IEEE Trans, Automat. Contr. 50(5), 631–645 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Oh, J., Bernstein, D.S.: Piecewise linear identification for the rate-independent and rate-dependent Duhem hysteresis models. IEEE Trans. Automat. Contr. 52(3), 576–582 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Slotine, J.J.E., Li, W.: Applied Nonlinear Control. China Machine Press (2004)

    Google Scholar 

  17. Shyu, K.K., Liu, W.J., Hsu, K.C.: Decentralised variable structure control of uncertain large-scale systems containing a dead-zone. IEE Proc. Control Theory Appl. 150(5), 467–475 (2003)

    Article  Google Scholar 

  18. Su, C.-Y., Stepanenko, Y., Svoboda, J., Leung, T.P.: Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis. IEEE Trans. Automat. Contr. 45(12), 2427–2432 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Feng, Y., Hu, Y.-M., Rabbath, C.A., Su, C.-Y.: Robust adaptive control for a class of perturbed strict-feedback nonlinear systems with unknown Prandtl-Ishlinskii hysteresis. International Journal of Control 81(11), 1699–1708 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tan, X., Baras, J.S.: Modeling and Control of Hysteresis in Magnetostrictive Actuators. Automatica 40(9), 1469–1480 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tan, X., Baras, J.S.: Adaptive identification and control of hysteresis in smart materials. IEEE Trans, Automat. Contr. 50(16), 827–839 (2005)

    MathSciNet  MATH  Google Scholar 

  22. Tao, G., Kokotović, P.V.: Adaptive control of plants with unknown hysteresis. IEEE Trans. Automat. Contr. 40, 200–212 (1995)

    Article  MATH  Google Scholar 

  23. Visintin, A.: Differential Models of Hysteresis. Springer, New York (1994)

    Book  MATH  Google Scholar 

  24. Wang, Q., Su, C.-Y.: Robust adaptive control of a class of nonlinear systems including actuator hysteresis with Prandtl-Ishlinskii presentations. Automatica 42(5), 859–867 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhou, J., Wen, C.-Y., Zhang, Y.: Adaptive backstepping control of a class of uncertain nonlinear systems with unknown backlash-like hysteresis. IEEE Trans. Automat. Contr. 49(10), 1751–1757 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Feng, Y., Du, J., Su, CY. (2010). On the Robust Control of Systems Preceded by Differential Equation-Based Hysteresis Nonlinearities. In: Liu, H., Ding, H., Xiong, Z., Zhu, X. (eds) Intelligent Robotics and Applications. ICIRA 2010. Lecture Notes in Computer Science(), vol 6424. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16584-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16584-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16583-2

  • Online ISBN: 978-3-642-16584-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics