Skip to main content

Modeling and Fault Tolerant Controller Design for PM Spherical Actuator

  • Conference paper
  • 3335 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6424))

Abstract

This paper presents a method based on neural networks for achieving fault tolerant control in the PM spherical actuator control scheme. The model of a PM spherical actuator was developed. Tuning rules of the RBF networks which guarantees the stability of the fault system were derived and the on-line fault tolerant control scheme was developed. The control scheme does not need fault detection and diagnosis modules. An application tracking control problem for the tracking errors and Euler angles of an actuator driven by independent stator and rotor pairs is solved by using the controller. The effectiveness of the proposed method is illustrated by performing the simulation of a space trajectory tracking control.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gomi, H., Kawato, M.: Neural networks control for a closed-loop system using feedback error learning. Neural Networks 7(6), 933–946 (1993)

    Article  Google Scholar 

  2. Katebi, M.R., Grimble, M.J.: Integrated control, guidance and diagnosis for reconfigurable autonomous underwater vehicle control. Intemational Journal of Systems Science 30(1), 1021–1032 (1999)

    Article  MATH  Google Scholar 

  3. Saluds, S., Fuente, M.J.: Neural-networks-based fault detection and accommodation in a chemical reactor. In: Proc. of 14th World Congress of IFAC, pp. 169–174. IEEE Press, Beijing (1999)

    Google Scholar 

  4. Katebi, M.R.: Guidance controller design for autonomous underwater vehicles. In: Proc. of 14th World Congress of IFAC, Beijing, pp. 191–196 (October 1999)

    Google Scholar 

  5. Kosko, B.: Neural Networks and Fuzzy Systems. Prentice-Hall, Englewood Cliffs (1992)

    MATH  Google Scholar 

  6. White, D.A., Sofge, D.A.: Handbook of Intelligent Control-Neural, Fuzzy, and Adaptive Approaches. Van Nostrand Reinhold, New York (1992)

    Google Scholar 

  7. Horikawa, S., Furuhashi, T., Uchikawa, Y.: On fuzzy modeling using fuzzy neural networks with the hackpropagation algorithm. IEEE Trans. Neural Networks 3(5), 801–806 (1992)

    Article  Google Scholar 

  8. Hasegawa, T., Horikawa, S., Furuhashi, T., Uchikawa, Y.: An application of fuzzy neural networks to design of adaptive fuzzy controllers. In: Proc. Int. Joint Conf. Neural Networks, pp. 1761–1764. IEEE Press, New York (1993)

    Google Scholar 

  9. Moody, J., Darken, C.J.: Fast learning in networks of locally-tuned processing units. Neural Computa. 1, 281–294 (1989)

    Article  Google Scholar 

  10. Jang, J.-S.R., Sun, C.-T.: Functional equivalence between radial basis function networks and fuzzy inference systems. IEEE Trans. Neural Networks 4(1), 156–159 (1993)

    Article  Google Scholar 

  11. Nie, J., Linkens, D.A.: Learning control using fuzzified selforganizing radial basis function network. IEEE Trans. Fuzzy Syst. 1(4), 280–287 (1993)

    Article  Google Scholar 

  12. Watanabe, K., Tang, J., Nakamura, M., et al.: A Fuzzy-Gaussian Neural Network and Its Application to Mobile Robot Control. IEEE Trans. on Control Systems Technology 4(2), 193–199 (1996)

    Article  Google Scholar 

  13. Wang, Q., Li, Z., et al.: Magnetic Field Computation of a PM Spherical Stepper Motor Using Integral Equation Method. IEEE Trans. on Magn. 42(4), 731–734 (2006)

    Article  MathSciNet  Google Scholar 

  14. Qunjing, W., Zheng, L., Kun, X., et al.: Calculation and Analysis on Configuration Parameters and Torque Characteristics of a Novel Spherical Stepper Motor. Proceedings of the CSEE 26(10), 158–165 (2006)

    Google Scholar 

  15. Qunjing, W., Zheng, L., et al.: Kinematic Analysis and Simulation of Permanent Magnet Spherical Stepper Motor. Journal of System Simulation 17(9), 2260–2264 (2005)

    Google Scholar 

  16. Li, Z., Wang, Q.: Modeling and Control of a Permanent Magnet Spherical Stepper Motor. In: Proceeding of International Conference on Electrical Machines and Systems, pp. 1574–1579. IEEE Press, Seoul (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, Z. (2010). Modeling and Fault Tolerant Controller Design for PM Spherical Actuator. In: Liu, H., Ding, H., Xiong, Z., Zhu, X. (eds) Intelligent Robotics and Applications. ICIRA 2010. Lecture Notes in Computer Science(), vol 6424. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16584-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16584-9_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16583-2

  • Online ISBN: 978-3-642-16584-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics