Skip to main content

Cartesian Impedance Control on Five-Finger Dexterous Robot Hand DLR-HIT II with Flexible Joint

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6424))

Included in the following conference series:

Abstract

This paper presents an impedance controller for five-finger dexterous robot hand DLR-HIT II, which is derived in Cartesian space. By considering flexibility in finger joints and strong mechanical couplings in differential gear-box, modeling and control of the robot hand are described in this paper. The model-based friction estimation and velocity observer are carried out with an extended Kalman filter, which is implemented with parameters estimated by Least Squares Method. The designed estimator demonstrates good prediction performance, as shown in the experimental results. Stability analysis of the proposed impedance controller is carried out and described in this paper. Impedance control experiments are conducted with the five-finger dexterous robot hand DLR-HIT II in Cartesian coordinates system to help study the effectiveness of the proposed controller with friction compensation and hardware architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bicchi, A.: Hands for dexterous manipulation and robust grasping: a difficultroad toward simplicity. IEEE Transactions on Robotics and Automation 16(6), 652–662 (2000)

    Article  Google Scholar 

  2. Salisbury, J., Craig, J.: Articulated hands: Force control and kinematic issues. The International Journal of Robotics Research 1(1), 4 (1982)

    Article  Google Scholar 

  3. Jacoben, S., et al.: The Utah/MIT dexterous hand: Work in progress. Int. J. Robot 3(4), 21–50 (1984)

    Article  Google Scholar 

  4. Lovchik, C., Difler, M.: The robonaut hand: A dextrous robotic hand for space. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 907–912 (1999)

    Google Scholar 

  5. Kawasaki, H., Komatsu, T., Uchiyama, K.: Dexterous anthropomorphic robot hand with distributed tactile sensor: Gifu hand II, IEEE. ASME Trans. on Mechatronics 7(3), 296–303 (2002)

    Article  Google Scholar 

  6. Butterfass, J., Grebenstein, M., Liu, H.: DLR-Hand II: Next generation of a dexterous robot hand. In: Proceedings of the 2001 IEEE International Conference on Robotics & Automation, pp. 109–114 (2001)

    Google Scholar 

  7. Liu, H., Meusel, P., Hirzinger, G., Jin, M., Liu, Y., Xie, Z.: The modular multisensory DLR-HIT-hand: Hardware and software architecture. IEEE/ASME Transactions on Mechatronics 13(4), 461–469 (2008)

    Article  MATH  Google Scholar 

  8. Chiaverini, S., Sciavicco, L.: The parallel approach to force/position control of roboticmanipulators. IEEE Transactions on Robotics and Automation 9(4), 361–373 (1993)

    Article  Google Scholar 

  9. Volpe, R., Khosla, P.: A theoretical and experimental investigation of explicit forcecontrol strategies for manipulators. IEEE Transactions on Automatic Control 38(11), 1634–1650 (1993)

    Article  MathSciNet  Google Scholar 

  10. Roy, J., Whitcomb, L.: Adaptive force control of position/velocity controlled robots: theory and experiment. IEEE Transactions on Robotics and Automation 18(2), 121–137 (2002)

    Article  Google Scholar 

  11. Hogan, N.: Impedance control-An approach to manipulation. I-Theory. II-Implementation. III-Applications. ASME, Transactions, Journal of Dynamic Systems, Measurement and Control 107 (1985), ISSN: 0022-0434

    Google Scholar 

  12. Kazerooni, H., Houpt, P., Sheridan, T.: Robust compliant motion for manipulators: the fundamental concepts of compliant motion (part I); design method (part II). IEEE Journal of Robotics and Automation (legacy, pre-1988) 2(2), 83–105 (1986)

    Article  Google Scholar 

  13. Khatib, O.: A unified approach for motion and force control of robot manipulators: The operational space formulation. IEEE Journal of Robotics and Automation 3(1), 43–53 (1987)

    Article  Google Scholar 

  14. Bonitz, R., Hsia, T.: Internal force-based impedance control for cooperating manipulators. IEEE Transactions on Robotics and Automation 12(1), 78–89 (1996)

    Article  Google Scholar 

  15. Spong, M., Khorasani, K., Kokotovic, P.: An integral manifold approach to the feedback control of flexible joint robots. IEEE Journal of Robotics and Automation (legacy, pre-1988) 3(4), 291–300 (1987)

    Article  Google Scholar 

  16. Tian, L., Goldenberg, A.: Robust adaptive control of flexible joint robots with joint torque feedback. In: Proceedings of 1995 IEEE International Conference on Robotics and Automation, vol. 1 (1995)

    Google Scholar 

  17. De Luca, A., Lucibello, P.: A general algorithm for dynamic feedback linearization of robots with elastic joints. In: IEEE International Conference on Robotics and Automation, pp. 504–510 (1998)

    Google Scholar 

  18. Ott, C., Albu-Schaeffer, A., Kugi, A., Hirzinger, G.: On the Passivity-Based Impedance Control of Flexible Joint Robots. IEEE Transactions on Robotics 24(2), 416–429 (2008)

    Article  Google Scholar 

  19. Albu-Schaeffer, A., Ott, C., Hirzinger, G.: A unified passivity-based control framework for position, torque and impedance control of flexible joint robots. The International Journal of Robotics Research 26(1), 5–21 (2007)

    Article  MATH  Google Scholar 

  20. Liu, H., Wu, K., Meusel, P., Seitz, N., Hirzinger, G., Jin, M., Liu, Y., Fan, S., Lan, T., Chen, Z.: Multisensory five-finger dexterous hand: The DLR/HIT Hand II. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008, pp. 3692–3697 (2008)

    Google Scholar 

  21. Gelb, A.: Applied optimal estimation. MIT Press, Cambridge (2002)

    Google Scholar 

  22. Connette, C.P.: Intern Report On DLR Hand II, Institute of Robotic and Mechatronics, DLR (2006)

    Google Scholar 

  23. Albu-Schaeffer, A., Ott, C., Hirzinger, G.: A passivity based Cartesian impedance controller for flexible joint robots–Part II: full state feedback, impedance design and experiments. In: IEEE International Conference on Robotics and Automation, Citeseer, pp. 2666–2672 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, Z., Lii, N.Y., Jin, M., Fan, S., Liu, H. (2010). Cartesian Impedance Control on Five-Finger Dexterous Robot Hand DLR-HIT II with Flexible Joint. In: Liu, H., Ding, H., Xiong, Z., Zhu, X. (eds) Intelligent Robotics and Applications. ICIRA 2010. Lecture Notes in Computer Science(), vol 6424. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16584-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16584-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16583-2

  • Online ISBN: 978-3-642-16584-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics