Skip to main content

Introduction

  • Chapter
  • First Online:
High Speed VCSELs for Optical Interconnects

Part of the book series: Springer Theses ((Springer Theses))

  • 1097 Accesses

Abstract

The length of a data transmission line has a strong impact on the quality of the transmitted signal and determines the absolute values of the important physical quantities, e.g. electrical resistance, optical absorption, optical dispersion, and overall losses. Therefore it appears logical to classify data transmission lines with respect to their length. The longest communication lines span distances of many thousand kilometers, for example the intercontinental fiber-based links between North America and Europe, Asia and Australia, etc. The shortest interconnects could be only several micrometers or even shorter in length, for example within a microprocessor chip in a personal computer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://www.bordalierinstitute.com/evolution.html

  2. Soda H, Iga K, Kitahara C, Suematsu Y (1979) GaInAsP/InP surface emitting injection lasers. Jpn J Appl Phys 18(12):2329–2330

    Article  ADS  Google Scholar 

  3. Iga K, Koyama F, Kinoshita S (1988) Surface emitting semiconductor lasers. IEEE J Quant Electron 24(9):1845–1855

    Article  ADS  Google Scholar 

  4. Lee YH, Tell B, Brown-Goebeler KF, Leibenguth RE, Mattera VD (1991) Deep-red continuous wave top-surface-emitting vertical-cavity AlGaAs superlattice lasers. IEEE Photon Technol Lett 3(2):108–109

    Article  ADS  Google Scholar 

  5. Iga K (2000) Surface-emitting laser—its birth and generation of new optoelectronics field. IEEE J Sel Top Quant Electron 6(6):1201–1215

    Article  Google Scholar 

  6. Iga K (2008) Vertical-cavity surface-emitting laser: its conception and evolution. Jpn J Appl Phys 47(1):1–10

    Article  ADS  Google Scholar 

  7. Collins D, Li N, Kuchta D, Doany F, Schow C, Helms C, Yang L (2008) Development of high-speed VCSELs: 10 Gb/s serial links and beyond. In: Proceedings of the SPIE 6908-09

    Google Scholar 

  8. Doany FE, Schares L, Schow CL, Schuster C, Kuchta DM, Pepeljugoski PK (2006) Chip-to-chip optical interconnects. In: OFC, Anaheim, CA, USA, OFA3

    Google Scholar 

  9. Ebeling KJ, Michalzik R, King R, Schnitzer P, Wiedemann D, Jäger R, Jung C, Grabherr M, Miller M (1998) Applications of VCSELs for optical interconnects. In: Proceedings of the 24th European conference on optical communication, Madrid, Spain, vol 3, pp 29–31

    Google Scholar 

  10. Ahadian J, Kusumoto K. Analog modulation characteristics of multimode fiber links based on commercial VCSELs. Executive summary, Ultra Communications, Inc. http://ultracomm-inc.com/Documentation/RF-Photonics-Summary.pdf. Accessed 11 August 2009

  11. Kash J. Internal optical interconnects in next generation high-performance servers. http://www.cns.cornell.edu/documents/JeffKashIBMTJWatsonResearchCenter.pdf

  12. Huffaker DL, Deppe DG, Kumar K, Rogers TJ (1994) Native-oxide defined ring contact for low threshold vertical-cavity lasers. Appl Phys Lett 65:97–99

    Article  ADS  Google Scholar 

  13. Choquette KD, Schneider RP Jr, Lear KL, Geib KM (1994) Low threshold voltage vertical-cavity lasers fabricated by selective oxidation. Electron Lett 30(24):2043–2044

    Article  Google Scholar 

  14. Koyama F (2006) Recent advances of VCSEL photonics. J Lightwave Technol 24(12):4502–4513

    Article  ADS  MathSciNet  Google Scholar 

  15. Avago Technologies. http://www.avagotech.com

  16. Finisar Corporation. http://www.finisar.com

  17. Emcore Corporation. http://www.emcore.com/

  18. Benner A (2009) Cost-effective optics: enabling the exascale roadmaps. In: 17th annual IEEE symposium on high-performance interconnects, New York. http://www.hoti.org/hoti17/program/slides/SpecialSession/Benner_Optics_Enabling_Exascale_Roadmaps.HotI.090827.pdf. Accessed 27 August 2009

  19. Emcore AOC product brief. http://www.emcore.com/fiber_optics/emcoreconnects

  20. Active optical cables market report 2010. Information Gatekeepers Inc. http://www.igigroup.com/st/pages/aoc.html. Accessed 1 January 2010

  21. Light Peak, Intel. http://www.intel.com/go/lightpeak

  22. Savage N (2002) Linking with light. IEEE Spectrum vol 39(8) pp 32–36, Cover story, August

    Google Scholar 

  23. Mohammed E, Alduino A, Thomas T, Braunisch H, Lu D, Heck J, Liu A, Young I, Barnett B, Vandentop G, Mooney R (2004) Optical interconnects system integration for ultra-short-reach applications. Intel Technol J 8(2):115–128

    Google Scholar 

  24. Kobrinsky MJ, Block BA, Zheng J-F, Barnett BC, Mohammed E, Reshotko M, Robertson F, List S, Young I, Cadien K (2004) On-chip optical interconnects. Intel Technol J 8(2):129–142

    Google Scholar 

  25. Miller DAB (1997) Physical reasons for optical interconnection. Intel J Optoelectron 11:155–168

    Google Scholar 

  26. Kern AM (2007) CMOS circuits for VCSEL-based optical IO. Dissertation, Massachusetts Institute of Technology, June

    Google Scholar 

  27. Palermo S (2007) Design of high-speed optical interconnect transceivers. Dissertation, Stanford University, September

    Google Scholar 

  28. Benner AF, Ignatowski M, Kash JA, Kuchta DM, Ritter MB (2005) Exploitation of optical interconnects in future server architectures. IBM J Res Dev 49(4/5):755

    Article  Google Scholar 

  29. Schares L, Kash J, Doany F, Schow CL, Schuster C, Kuchta DM, Pepeljugoski PK, Trewhella JM, Baks CW, John RA, Shan L, Kwark YH, Budd RA, Chiniwalla P, Libsch FR, Rosner J, Tsang CK, Patel CS, Schaub JD, Dangel R, Horst F, Offrein BJ, Kucharski D, Guckenberger D, Hedge S, Nyikal H, Lin C-K, Tandon A, Trott GR, Nystrom M, Bour DP, Tan RTM, Dolfi DW (2006) Terabus: terabit/second-class card-level optical interconnects technologies. IEEE J Sel Top Quant Electron 12(5):1032–1044

    Article  Google Scholar 

  30. Kash JA, Doany F, Kuchta D, Pepeljugoski P, Schares L, Schaub J, Schow C, Trewhella J, Baks C, Kwark Y, Schuster C, Shan L, Tsang C, Rosner J, Libsch F, Budd R, Chiniwalla P, Guckenberger D, Kucharski D, Dangel R, Offrein B, Tan M, Troff G, Lin D, Tandon A, Nystrom M (2005) Terabus: a chip-to-chip parallel optical interconnects. In: LEOS 2005, the 18th annual meeting of the IEEE Lasers & Electro-Optics Society, Hilton Sydney, Sydney, Australia, TuW3, 23–27 October 2005, 14:30–14:45

    Google Scholar 

  31. Lemoff BE, Ali ME, Panotopoulos G, Flower GM, Madhavan B, Levi AFJ, Dolfi DW (2004) MAUI: enabling fiber-to-the-processor with parallel multi-wavelength optical interconnects. J Lightw Technol 22(9):2043–2054

    Article  ADS  Google Scholar 

  32. Whitman B (2004) International FTTH deployments: lessons learned around the globe. In: FTTH conference 2004, Orlando, FL, USA, 6 October 2004

    Google Scholar 

  33. Pavesi L, Guillot G (eds) (2006) Optical interconnects: the silicon approach. Springer, Berlin

    Google Scholar 

  34. Fang AW, Lively E, Kuo Y-H, Liang D, Bowers JE (2008) Distributed feedback silicon evanescent laser. In: Proceedings of the optical fiber communication conference

    Google Scholar 

  35. Fang AW (2008) Silicon evanescent lasers. Dissertation, University of California, Santa Barbara, CA, USA, March

    Google Scholar 

  36. Fang AW, Lively E, Kuo Y-H, Liang D, Bowers JE (2008) A distributed feedback silicon evanescent laser. Optics Express 16(7):4413–4419

    Article  ADS  Google Scholar 

  37. Fang AW, Jones R, Park H, Cohen O, Raday O, Paniccia MJ, Bowers JE (2007) Integrated AlGaInAs-silicon evanescent racetrack laser and photodetector. Optics Express 15(5):2315–2322

    Article  ADS  Google Scholar 

  38. Koch BR, Fang AW, Cohen O, Bowers JE (2007) Mode-locked silicon evanescent lasers. Optics Express 15(18):11225–11233

    Article  ADS  Google Scholar 

  39. Fang AW, Park H, Cohen O, Jones R, Paniccia MJ, Bowers JE (2006) Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Optics Express 14(20):9203–9210

    Article  ADS  Google Scholar 

  40. Park H, Fang AW, Cohen O, Jones R, Paniccia MJ, Bowers JE (2007) A hybrid AlGaInAs-silicon evanescent amplifier. IEEE Photonics Technol Lett 19(4):230–232

    Article  ADS  Google Scholar 

  41. Yin T, Cohen R, Morse M, Sarid G, Chetrit Y, Rubin D, Paniccia M (2008) 40 Gb/s Ge-on-SOI waveguide photodetectors by selective Ge growth. In: Proceedings of the optical fiber communication conference

    Google Scholar 

  42. Liao L, Liu A, Rubin D, Basak J, Chetrit Y, Nguyen H, Cohen R, Izhaky N, Paniccia M (2007) 40 Gbit/s silicon optical modulator for high-speed applications. Electron Lett 43(22):1196–1197

    Article  Google Scholar 

  43. Moore’s Law. http://www.intel.com/technology/mooreslaw

  44. Moore GE (1965) Cramming more components onto integrated circuits. The experts look ahead. Electronics 38(8)

    Google Scholar 

  45. Press release (2005) Innovation more important than ever in platform era. Intel Developer Forum, San Francisco, CA, USA, 1 March

    Google Scholar 

  46. International technology roadmap for semiconductors, 2007 edn (ITRS 2007). Executive Summary http://www.itrs.net/Links/2007ITRS/ExecSum2007.pdf

  47. Jewell J, Graham L, Crom M, Maranowski K, Smith J, Fanning T (2006) 1310 nm VCSELs in 1–10 Gb/s commercial application. In: Proceedings of the SPIE, vol 6132, p 613204

    Google Scholar 

  48. Hofmann W, Müller M, Nadtochiy AM, Meltzer C, Mutig A, Böhm G, Rosskopf J, Bimberg D, Amann MC, Chang-Hasnain C (2009) 22 Gb/s long wavelength VCSELs. Optics Express 17(20):17547–17554

    Article  ADS  Google Scholar 

  49. Leisher PO, Chen C, Sulkin JD, Alias MSB, Sharif KAM, Choquette KD (2007) High modulation bandwidth implant-confined photonic crystal vertical-cavity surface-emitting lasers. IEEE Photonics Technol Lett 19(19):1541–1543

    Article  ADS  Google Scholar 

  50. Danner AJ, Raftery JJ Jr, Leisher PO, Choquette KD (2006) Single mode photonic crystal vertical cavity lasers. Appl Phys Lett 88:091114

    Article  ADS  Google Scholar 

  51. Leisher PO, Danner AJ, Raftery JJ Jr, Siriani D, Choquette KD (2006) Loss and index guiding in single-mode proton-implanted holey vertical-cavity surface-emitting lasers. IEEE J Quant Electron 42(10):1091–1096

    Article  ADS  Google Scholar 

  52. Lott JA, Shchukin VA, Ledentsov NN, Stintz A, Hopfer F, Mutig A, Fiol G, Bimberg D, Blokhin SA, Karachinsky LY, Novikov II, Maximov MV, Zakharov ND, Werner P (2009) 20 Gbit/s error free transmission with ~850 nm GaAs-based vertical cavity surface emitting lasers (VCSELs) containing InAs–GaAs submonolayer quantum dot insertions. In: Proceedings of the SPIE 7211, paper 7211-40, Photonics West 2009, San Jose, CA, 29 January 2009

    Google Scholar 

  53. Johnson RH, Kuchta DM (2008) 30 Gb/s directly modulated 850 nm Datacom VCSELs. In: Conference on lasers and electro-optics (CLEO), CLEO Postdeadline Session II (CPDB), San Jose, CA, 4 May 2008

    Google Scholar 

  54. Westbergh P, Gustavsson JS, Haglund A, Sköld M, Joel A, Larsson A (2009) High-speed, low-current-density 850 nm VCSELs. IEEE J Sel Top Quant Electron 15(3):694–703

    Article  Google Scholar 

  55. Westbergh P, Gustavsson JS, Haglund A, Larsson A, Hopfer F, Fiol G, Bimberg D, Joel A (2009) 32 Gbit/s multimode fiber transmission using high-speed, low current density 850 nm VCSEL. IEEE Electron Lett 45(7)

    Google Scholar 

  56. Ko J, Hegblom ER, Akulova Y, Thibeault BJ, Coldren LA (1997) Low-threshold 840-nm laterally oxidized vertical-cavity lasers using AlInGaAs–AlGaAs strained active layers. IEEE Photon Technol Lett 9(7):863–865

    Article  ADS  Google Scholar 

  57. Kuo HC, Chang YS, Lai FY, Hsueh TH, Laih LH, Wang SC (2003) High-speed modulation of 850 nm InGaAsP/InGaP strain-compensated VCSELs. Electron Lett 39(14):1051–1053

    Article  Google Scholar 

  58. Kuchta DM, Pepeljugoski P, Kwark Y (2001) VCSEL modulation at 20 Gb/s over 200 m of multimode fiber using a 3.3 V SiGe laser driver IC. Technical digest LEOS summer topical meeting, paper no. WA1.2, pp 49–50

    Google Scholar 

  59. Westbergh P, Gustavsson J, Haglund A, Sunnerud H, Larsson A (2008) Large aperture 850 nm VCSELs operating at bit rates up to 25 Gbit/s. Electron Lett 44(15):907–908

    Article  Google Scholar 

  60. Westbergh P, Gustavsson JS, Haglund A, Larsson A (2008) Large aperture 850 nm VCSEL operating at 28 Gbit/s. In: The 21st IEEE international semiconductor laser conference 2008, MB1, Sorrento, Italy, September 2008

    Google Scholar 

  61. Blokhin SA, Lott JA, Mutig A, Fiol G, Ledentsov NN, Maximov MV, Nadtochiy AM, Shchukin VA, Bimberg D (2009) Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s. Electron Lett 45(10)

    Google Scholar 

  62. Mutig A, Blokhin SA, Nadtochiy AM, Fiol G, Lott JA, Shchukin VA, Ledentsov NN, Bimberg D (2009) Frequency response of large aperture oxide-confined 850 nm vertical cavity surface emitting lasers. Appl Phys Lett 95:131101

    Article  ADS  Google Scholar 

  63. Kash JA, Doany FE, Schares L, Schow CL, Schuster C, Kuchta DM, Pepeljugoski PK, Trewhella JM, Baks CW, John RA, Shan L, Kwark YH, Budd RA, Chiniwalla P, Libsch FR, Rosner J, Tsang CK, Patel CS, Schaub JD, Kucharski D, Guckenberger D, Hegde S, Nyikal H, Dangel R, Horst F (2006) Chip-to-chip optical interconnects. In: Optical fiber communication conference and exposition and the national fiber optic engineers conference (OFC), optical interconnect technology (OFA), paper OFA3, Anaheim, CA, 5 March 2006

    Google Scholar 

  64. Chang YC, Wang CS, Coldren LA (2007) High-efficiency high-speed VCSELs with 35 Gbit/s error-free operation. IEEE Electron Lett 43(19):1022–1023

    Article  Google Scholar 

  65. Chang Y-C (2008) Engineering vertical-cavity surface-emitting lasers for high-speed operation. Thesis, University of California Santa Barbara, December

    Google Scholar 

  66. Hopfer F, Mutig A, Fiol G, Kuntz M, Shchukin V, Ledentsov NN, Bimberg D, Mikhrin SS, Krestnikov IL, Livshits DA, Kovsh AR, Bornholdt C (2006) 20 Gb/s 85°C error free operation of VCSEL based on submonolayer deposition of quantum dots. In: IEEE-LEOS 20th international semiconductor laser conference (ISLC), Kohala Coast, HI, USA, 17–21 September 2006

    Google Scholar 

  67. Hopfer F, Mutig A, Fiol G, Kuntz M, Shchukin VA, Haisler VA, Warming T, Stock E, Mikhrin SS, Krestnikov IL, Livshits DA, Kovsh AR, Bornholdt C, Lenz A, Eisele H, Dähne M, Ledentsov NN, Bimberg D (2007) 20 Gb/s 85°C error-free operation of VCSELs based on submonolayer deposition of quantum dots. IEEE J Sel Top Quant Electron 13(5)

    Google Scholar 

  68. Mutig A, Fiol G, Moser P, Arsenijevic D, Shchukin VA, Ledentsov NN, Mikhrin SS, Krestnikov IL, Livshits DA, Kovsh AR, Hopfer F, Bimberg D (2008) 120°C 20 Gbit/s operation of 980 nm VCSEL. Electron Lett 44(22)

    Google Scholar 

  69. Mutig A, Fiol G, Pötschke K, Moser P, Arsenijevic D, Shchukin VA, Ledentsov NN, Mikhrin SS, Krestnikov IL, Livshits DA, Kovsh AR, Hopfer F, Bimberg D (2009) Temperature-dependent small-signal analysis of high-speed high-temperature stable 980-nm VCSELs. IEEE J Sel Top Quant Electron 15(3)

    Google Scholar 

  70. Lin C-K, Tandon A, Djordjev K, Corzine SW, Tan MRT (2007) High-speed 985 nm bottom-emitting VCSEL arrays for chip-to-chip parallel optical interconnects. IEEE J Sel Top Quant Electron 13(5):1332–1339

    Article  Google Scholar 

  71. Anan T, Suzuki N, Yashiki K, Fukatsu K, Hatakeyama H, Akagawa T, Tokutome K, Tsuji M (2007) High-speed InGaAs VCSELs for optical interconnections. In: International symposium on VCSELs and integrated photonics, Tokyo, Japan, 17–18 December 2007, pp 76–78

    Google Scholar 

  72. Suzuki N, Anan T, Hatakeyama H, Fukatsu K, Tokutome K, Akagawa T, Tsuji M (2009) High speed 1.1-μm-range InGaAs-based VCSELs. IEICE Trans Electron E92-C(7):942–950

    Article  ADS  Google Scholar 

  73. Suzuki N, Hatakeyama H, Fukatsu K, Anan T, Yashiki K, Tsuji M (2006) 25-Gbps operation of 1.1-μm-range InGaAs VCSELs for high-speed optical interconnections. In: Proceedings of the optical fiber communication conference 2006 (OFC), paper no. OFA4

    Google Scholar 

  74. Hatakeyama H, Akagawa T, Fukatsu K, Suzuki N, Yashiki K, Tokutome K, Anan T, Tsuji M (2008) 25 Gbit/s-100°C operation and high reliability of 1.1-μm-range VCSELs with InGaAs/GaAsP strain-compensated MQWs. In: Conference on lasers and electro-optics (CLEO), VCSEL I (CMW), San Jose, CA, 4 May 2008

    Google Scholar 

  75. Fukatsu K, Shiba K, Suzuki Y, Suzuki N, Hatakeyama H, Anan T, Yashiki K, Tsuji M (2007) 30-Gbps transmission over 100 m-MMFs (GI32) using 1.1 μm-range VCSELs and receivers. In: IEEE 19th international conference on indium phosphide & related materials, IPRM ‘07, Matsue, Japan, 14–18 May 2007

    Google Scholar 

  76. Yashiki K, Suzuki N, Fukatsu K, Anan T, Hatakeyama H, Tsuji M (2007) 1.1-μm-range tunnel junction VCSELs with 27-GHz relaxation oscillation frequency. In: Proceedings of the optical fiber communication conference 2007, paper no. OMK1

    Google Scholar 

  77. Yashiki K, Suzuki N, Fukatsu K, Anan T, Hatakeyama H, Tsuji M (2007) 1.1-μm-range low-resistance InGaAs quantum-well vertical-cavity surface-emitting lasers with a buried type-II tunnel junction. Jpn J Appl Phys 46:L512–L514

    Article  ADS  Google Scholar 

  78. Suzuki N, Hatakeyama H, Tokutome K, Yamada M, Anan T, Tsuji M (2005) 1.1 μm range InGaAs VCSELs for high-speed optical interconnections. In: Proceedings of the lasers and electro-optics society, 2005, paper no. TuAA1, pp 394–395

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Mutig .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mutig, A. (2011). Introduction. In: High Speed VCSELs for Optical Interconnects. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16570-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16570-2_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16569-6

  • Online ISBN: 978-3-642-16570-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics