Skip to main content

Collagens, Suprastructures, and Collagen Fibril Assembly

  • Chapter
  • First Online:

Part of the book series: Biology of Extracellular Matrix ((BEM))

Abstract

Extracellular matrices are composed of collagens, proteoglycans, glycosaminoglycans, glycoproteins, and elastin. Extracellular matrix not only serves as structural scaffolds in organs and tissues, but also determines cellular function through cell–matrix interactions. Accordingly, the structures and organization of extracellular matrices are diverse and adapted to tissue-specific function. This chapter focuses on the collagen family. There are 28 different types of collagen that assemble into a variety of supramolecular structures including fibrils, microfibrils, and network-like structures. This chapter begins with a discussion of collagen molecules. This is followed by a definition of the supramolecular structure of different collagen types and their assembly and function within extracellular matrices. A discussion of general mechanistic principles involved in the assembly of collagen-containing suprastructures is presented. Finally, the regulation of tissue-specific collagen fibrillogenesis is used to illustrate how these general principles are applied in different tissues to generate the diversity in extracellular matrix structures and functions observed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ameye L, Aria D, Jepsen K, Oldberg A, Xu T, Young MF (2002) Abnormal collagen fibrils in tendons of biglycan/fibromodulin-deficient mice lead to gait impairment, ectopic ossification, and osteoarthritis. FASEB J 16:673–680

    Article  CAS  PubMed  Google Scholar 

  • Ameye L, Young MF (2002) Mice deficient in small leucine-rich proteoglycans: novel in vivo models for osteoporosis, osteoarthritis, Ehlers-Danlos syndrome, muscular dystrophy, and corneal diseases. Glycobiology 12:107R–116R

    Article  CAS  PubMed  Google Scholar 

  • Ansorge HL, Meng X, Zhang G, Veit G, Sun M, Klement JF, Beason DP, Soslowsky LJ, Koch M, Birk DE (2009) Type XIV collagen regulates fibrillogenesis: premature collagen fibril growth and tissue dysfunction in null mice. J Biol Chem 284:8427–8438

    Article  CAS  PubMed  Google Scholar 

  • Apte SS (2009) A disintegrin-like and metalloprotease (reprolysin-type) with thrombospondin type 1 motif (ADAMTS) superfamily: functions and mechanisms. J Biol Chem 284: 31493–31497

    Article  CAS  PubMed  Google Scholar 

  • Aszodi A, Chan D, Hunziker E, Bateman JF, Fassler R (1998) Collagen II is essential for the removal of the notochord and the formation of intervertebral discs. J Cell Biol 143:1399–1412

    Article  CAS  PubMed  Google Scholar 

  • Bachinger HP, Bruckner P, Timpl R, Prockop DJ, Engel J (1980) Folding mechanism of the triple helix in type-III collagen and type-III pN-collagen. Role of disulfide bridges and peptide bond isomerization. Eur J Biochem 106:619–632

    Article  CAS  PubMed  Google Scholar 

  • Ball S, Bella J, Kielty C, Shuttleworth A (2003) Structural basis of type VI collagen dimer formation. J Biol Chem 278:15326–15332

    Article  CAS  PubMed  Google Scholar 

  • Batge B, Winter C, Notbohm H, Acil Y, Brinckmann J, Muller PK (1997) Glycosylation of human bone collagen I in relation to lysylhydroxylation and fibril diameter. J Biochem (Tokyo) 122:109–115

    CAS  Google Scholar 

  • Berg RA, Prockop DJ (1973) The thermal transition of a non-hydroxylated form of collagen. Evidence for a role for hydroxyproline in stabilizing the triple-helix of collagen. Biochem Biophys Res Commun 52:115–120

    Article  CAS  PubMed  Google Scholar 

  • Birk DE (2001) Type V collagen: heterotypic type I/V collagen interactions in the regulation of fibril assembly. Micron 32:223–237

    Article  CAS  PubMed  Google Scholar 

  • Birk DE, Bruckner P (2005) Collagen suprastructures. Top Curr Chem 247:185–205

    CAS  Google Scholar 

  • Birk DE, Linsenmayer TF (1994) Collagen fibril assembly, deposition, and organization into tissue-specific matrices. In: Yurchenco PD, Birk DE, Mecham RP (eds) Extracellular matrix assembly and structure. Academic, NY, pp 91–128

    Google Scholar 

  • Birk DE, Nurminskaya MV, Zycband EI (1995) Collagen fibrillogenesis in situ: fibril segments undergo post-depositional modifications resulting in linear and lateral growth during matrix development. Dev Dyn 202:229–243

    CAS  PubMed  Google Scholar 

  • Birk DE, Trelstad RL (1986) Extracellular compartments in tendon morphogenesis: collagen fibril, bundle, and macroaggregate formation. J Cell Biol 103:231–240

    Article  CAS  PubMed  Google Scholar 

  • Birk DE, Trelstad RL (1984) Extracellular compartments in matrix morphogenesis: collagen fibril, bundle, and lamellar formation by corneal fibroblasts. J Cell Biol 99:2024–2033

    Article  CAS  PubMed  Google Scholar 

  • Birk DE, Zycband EI, Winkelmann DA, Trelstad RL (1989) Collagen fibrillogenesis in situ: fibril segments are intermediates in matrix assembly. Proc Natl Acad Sci USA 86:4549–4553

    Article  CAS  PubMed  Google Scholar 

  • Birk DE, Zycband EI, Woodruff S, Winkelmann DA, Trelstad RL (1997) Collagen fibrillogenesis in situ: fibril segments become long fibrils as the developing tendon matures. Dev Dyn 208: 291–298

    Article  CAS  PubMed  Google Scholar 

  • Blaschke UK, Eikenberry EF, Hulmes DJ, Galla HJ, Bruckner P (2000) Collagen XI nucleates self-assembly and limits lateral growth of cartilage fibrils. J Biol Chem 275:10370–10378

    Article  CAS  PubMed  Google Scholar 

  • Boot-Handford RP, Tuckwell DS (2003) Fibrillar collagen: the key to vertebrate evolution? A tale of molecular incest. Bioessays 25:142–151

    Article  CAS  PubMed  Google Scholar 

  • Bristow J, Carey W, Egging D, Schalkwijk J (2005) Tenascin-X, collagen, elastin, and the Ehlers-Danlos syndrome. Am J Med Genet C Semin Med Genet 139C:24–30

    Article  CAS  PubMed  Google Scholar 

  • Brittingham R, Uitto J, Fertala A (2006) High-affinity binding of the NC1 domain of collagen VII to laminin 5 and collagen IV. Biochem Biophys Res Commun 343:692–699

    Article  CAS  PubMed  Google Scholar 

  • Brodsky B, Eikenberry EF, Belbruno KC, Sterling K (1982) Variations in collagen fibril structure in tendons. Biopolymers 21:935–951

    Article  CAS  PubMed  Google Scholar 

  • Bruckner P, Eikenberry EF, Prockop DJ (1981) Formation of the triple helix of type I procollagen in cellulo. A kinetic model based on cis-trans isomerization of peptide bonds. Eur J Biochem 118:607–613

    Article  CAS  PubMed  Google Scholar 

  • Bruckner-Tuderman L (2010) Dystrophic epidermolysis bullosa: pathogenesis and clinical features. Dermatol Clin 28:107–114

    Article  CAS  PubMed  Google Scholar 

  • Bruckner-Tuderman L, Hopfner B, Hammami-Hauasli N (1999) Biology of anchoring fibrils: lessons from dystrophic epidermolysis bullosa. Matrix Biol 18:43–54

    Article  CAS  PubMed  Google Scholar 

  • Bruns RR, Press W, Engvall E, Timpl R, Gross J (1986) Type VI collagen in extracellular, 100-nm periodic filaments and fibrils: identification by immunoelectron microscopy. J Cell Biol 103:393–404

    Article  CAS  PubMed  Google Scholar 

  • Burgeson RE, Christiano AM (1997) The dermal-epidermal junction. Curr Opin Cell Biol 9:651–658

    Article  CAS  PubMed  Google Scholar 

  • Canty EG, Kadler KE (2002) Collagen fibril biosynthesis in tendon: a review and recent insights. Comp Biochem Physiol A Mol Integr Physiol 133:979–985

    Article  CAS  PubMed  Google Scholar 

  • Canty EG, Kadler KE (2005) Procollagen trafficking, processing and fibrillogenesis. J Cell Sci 118:1341–1353

    Article  CAS  PubMed  Google Scholar 

  • Canty EG, Lu Y, Meadows RS, Shaw MK, Holmes DF, Kadler KE (2004) Coalignment of plasma membrane channels and protrusions (fibripositors) specifies the parallelism of tendon. J Cell Biol 165:553–563

    Article  CAS  PubMed  Google Scholar 

  • Chakravarti S (2002) Functions of lumican and fibromodulin: lessons from knockout mice. Glycoconj J 19:287–293

    Article  CAS  PubMed  Google Scholar 

  • Chakravarti S, Petroll WM, Hassell JR, Jester JV, Lass JH, Paul J, Birk DE (2000) Corneal opacity in lumican-null mice: defects in collagen fibril structure and packing in the posterior stroma. Invest Ophthalmol Vis Sci 41:3365–3373

    CAS  PubMed  Google Scholar 

  • Chakravarti S, Zhang G, Chervoneva I, Roberts L, Birk DE (2006) Collagen fibril assembly during postnatal development and dysfunctional regulation in the lumican-deficient murine cornea. Dev Dyn 235:2493–2506

    Article  CAS  PubMed  Google Scholar 

  • Chou MY, Li HC (2002) Genomic organization and characterization of the human type XXI collagen (COL21A1) gene. Genomics 79:395–401

    Article  CAS  PubMed  Google Scholar 

  • Chu ML, Mann K, Deutzmann R, Pribula-Conway D, Hsu-Chen CC, Bernard MP, Timpl R (1987) Characterization of three constituent chains of collagen type VI by peptide sequences and cDNA clones. Eur J Biochem 168:309–317

    Article  CAS  PubMed  Google Scholar 

  • Colige A, Ruggiero F, Vandenberghe I, Dubail J, Kesteloot F, Van BJ, Beschin A, Brys L, Lapiere CM, Nusgens B (2005) Domains and maturation processes that regulate the activity of ADAMTS-2, a metalloproteinase cleaving the aminopropeptide of fibrillar procollagens types I-III and V. J Biol Chem 280:34397–34408

    Article  CAS  PubMed  Google Scholar 

  • Danielson KG, Baribault H, Holmes DF, Graham H, Kadler KE, Iozzo RV (1997) Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J Cell Biol 136:729–743

    Article  CAS  PubMed  Google Scholar 

  • Eikenberry EF, Bruckner P (1999) Supramolecular structure of cartilage matrix. In: Shaw MK, Rom E, Bilezekian JP (eds) Dynamics of bone and cartilage metabolism. Academic, San Diego, CA, pp 289–300

    Google Scholar 

  • Engel J, Bachinger HP (2005) Structure, stability and folding of the collagen triple helix. Top Curr Chem 247:7–33

    CAS  Google Scholar 

  • Eyre DR, Wu JJ, Fernandes RJ, Pietka TA, Weis MA (2002) Recent developments in cartilage research: matrix biology of the collagen II/IX/XI heterofibril network. Biochem Soc Trans 30:893–899

    Article  CAS  PubMed  Google Scholar 

  • Ezura Y, Chakravarti S, Oldberg A, Chervoneva I, Birk DE (2000) Differential expression of lumican and fibromodulin regulate collagen fibrillogenesis in developing mouse tendons. J Cell Biol 151:779–788

    Article  CAS  PubMed  Google Scholar 

  • Fessler JH, Bachinger HP, Lunstrum G, Fessler LI (1982) Biosynthesis and processing of some procollagens. In: Kuehn K, Schoene H, Timpl R (eds) New trends in basement membrane research. Raven, New York, pp 145–153

    Google Scholar 

  • Fitzgerald J, Rich C, Zhou FH, Hansen U (2008) Three novel collagen VI chains, alpha4(VI), alpha5(VI), and alpha6(VI). J Biol Chem 283:20170–20180

    Article  CAS  PubMed  Google Scholar 

  • Franzke CW, Bruckner P, Bruckner-Tuderman L (2005) Collagenous transmembrane proteins: recent insights into biology and pathology. J Biol Chem 280:4005–4008

    Article  CAS  PubMed  Google Scholar 

  • Franzke CW, Tasanen K, Schumann H, Bruckner-Tuderman L (2003) Collagenous transmembrane proteins: collagen XVII as a prototype. Matrix Biol 22:299–309

    Article  CAS  PubMed  Google Scholar 

  • Furthmayr H, Wiedemann H, Timpl R, Odermatt E, Engel J (1983) Electron-microscopical approach to a structural model of intima collagen. Biochem J 211:303–311

    CAS  PubMed  Google Scholar 

  • Gara SK, Grumati P, Urciuolo A, Bonaldo P, Kobbe B, Koch M, Paulsson M, Wagener R (2008) Three novel collagen VI chains with high homology to the alpha3 chain. J Biol Chem 283:10658–10670

    Article  CAS  PubMed  Google Scholar 

  • Gordon MK, Hahn RA (2010) Collagens. Cell Tissue Res 339:247–257

    Article  CAS  PubMed  Google Scholar 

  • Graham HK, Holmes DF, Watson RB, Kadler KE (2000) Identification of collagen fibril fusion during vertebrate tendon morphogenesis. The process relies on unipolar fibrils and is regulated by collagen-proteoglycan interaction. J Mol Biol 295:891–902

    Article  CAS  PubMed  Google Scholar 

  • Greenspan DS (2005) Biosynthetic processing of collagen molecules. Top Curr Chem 247:149–183

    CAS  Google Scholar 

  • Gregory KE, Oxford JT, Chen Y, Gambee JE, Gygi SP, Aebersold R, Neame PJ, Mechling DE, Bachinger HP, Morris NP (2000) Structural organization of distinct domains within the non-collagenous N-terminal region of collagen type XI. J Biol Chem 275:11498–11506

    Article  CAS  PubMed  Google Scholar 

  • Hagg R, Bruckner P, Hedbom E (1998) Cartilage fibrils of mammals are biochemically heterogeneous: differential distribution of decorin and collagen IX. J Cell Biol 142:285–294

    Article  CAS  PubMed  Google Scholar 

  • Halfter W, Dong S, Schurer B, Cole GJ (1998) Collagen XVIII is a basement membrane heparan sulfate proteoglycan. J Biol Chem 273:25404–25412

    Article  CAS  PubMed  Google Scholar 

  • Hoffman GG, Branam AM, Huang G, Pelegri F, Cole WG, Wenstrup RM, Greenspan DS (2010) Characterization of the six zebrafish clade B fibrillar procollagen genes, with evidence for evolutionarily conserved alternative splicing within the pro-alpha1(V) C-propeptide. Matrix Biol 29:261–275

    Article  CAS  PubMed  Google Scholar 

  • Hopkins DR, Keles S, Greenspan DS (2007) The bone morphogenetic protein 1/Tolloid-like metalloproteinases. Matrix Biol 26:508–523

    Article  CAS  PubMed  Google Scholar 

  • Illidge C, Kielty C, Shuttleworth A (1998) The alpha 1(VIII) and alpha 2(VIII) chains of type VIII collagen can form stable homotrimeric molecules. J Biol Chem 273:22091–22095

    Article  CAS  PubMed  Google Scholar 

  • Illidge C, Kielty C, Shuttleworth A (2001) Type VIII collagen: heterotrimeric chain association. Int J Biochem Cell Biol 33:521–529

    Article  CAS  PubMed  Google Scholar 

  • Jakus MA (1956) Studies on the cornea. II. The fine structure of Descement's membrane. J Biophys Biochem Cytol 2:243–252

    Article  CAS  PubMed  Google Scholar 

  • Jelinski LW, Torchia DA (1979) 13C/1H high power double magnetic resonance investigation of collagen backbone motion in fibrils and in solution. J Mol Biol 133:45–65

    Article  CAS  PubMed  Google Scholar 

  • Jepsen KJ, Wu F, Peragallo JH, Paul J, Roberts L, Ezura Y, Oldberg A, Birk DE, Chakravarti S (2002) A syndrome of joint laxity and impaired tendon integrity in lumican- and fibromodulin-deficient mice. J Biol Chem 277:35532–35540

    Article  CAS  PubMed  Google Scholar 

  • Kadler KE, Baldock C, Bella J, Boot-Handford RP (2007) Collagens at a glance. J Cell Sci 120:1955–1958

    Article  CAS  PubMed  Google Scholar 

  • Kadler KE, Hill A, Canty-Laird EG (2008) Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators. Curr Opin Cell Biol 20:495–501

    Article  CAS  PubMed  Google Scholar 

  • Kadler KE, Holmes DF, Trotter JA, Chapman JA (1996) Collagen fibril formation. Biochem J 316(Pt 1):1–11

    CAS  PubMed  Google Scholar 

  • Kalamajski S, Oldberg A (2010) The role of small leucine-rich proteoglycans in collagen fibrillogenesis. Matrix Biol 29:248–253

    Article  CAS  PubMed  Google Scholar 

  • Kassner A, Hansen U, Miosge N, Reinhardt DP, Aigner T, Bruckner-Tuderman L, Bruckner P, Grassel S (2003) Discrete integration of collagen XVI into tissue-specific collagen fibrils or beaded microfibrils. Matrix Biol 22:131–143

    Article  CAS  PubMed  Google Scholar 

  • Katz EP, Wachtel EJ, Maroudas A (1986) Extrafibrillar proteoglycans osmotically regulate the molecular packing of collagen in cartilage. Biochim Biophys Acta 882:136–139

    CAS  PubMed  Google Scholar 

  • Keller H, Eikenberry EF, Winterhalter KH, Bruckner P (1985) High post-translational modification levels in type II procollagen are not a consequence of slow triple-helix formation. Coll Relat Res 5:245–251

    CAS  PubMed  Google Scholar 

  • Khoshnoodi J, Cartailler JP, Alvares K, Veis A, Hudson BG (2006) Molecular recognition in the assembly of collagens: terminal noncollagenous domains are key recognition modules in the formation of triple helical protomers. J Biol Chem 281:38117–38121

    Article  CAS  PubMed  Google Scholar 

  • Kielty CM, Grant ME (2002) The collagen family: structure, assembly, and organization in the extracellular matrix. In: Royce PM, Steinmann B (eds) Connective tissue and its heritable disorders. Wiley-Liss, New York, pp 159–222

    Chapter  Google Scholar 

  • Knupp C, Squire JM (2001) A new twist in the collagen story–the type VI segmented supercoil. EMBO J 20:372–376

    Article  CAS  PubMed  Google Scholar 

  • Koch M, Schulze J, Hansen U, Ashwodt T, Keene DR, Brunken WJ, Burgeson RE, Bruckner P, Bruckner-Tuderman L (2004) A novel marker of tissue junctions, collagen XXII. J Biol Chem 279:22514–22521

    Article  CAS  PubMed  Google Scholar 

  • Kramer RZ, Bella J, Mayville P, Brodsky B, Berman HM (1999) Sequence dependent conformational variations of collagen triple-helical structure. Nat Struct Biol 6:454–457

    Article  CAS  PubMed  Google Scholar 

  • Kvansakul M, Bogin O, Hohenester E, Yayon A (2003) Crystal structure of the collagen alpha1(VIII) NC1 trimer. Matrix Biol 22:145–152

    Article  CAS  PubMed  Google Scholar 

  • Kwan AP, Cummings CE, Chapman JA, Grant ME (1991) Macromolecular organization of chicken type X collagen in vitro. J Cell Biol 114:597–604

    Article  CAS  PubMed  Google Scholar 

  • Li D, Clark CC, Myers JC (2000) Basement membrane zone type XV collagen is a disulfide-bonded chondroitin sulfate proteoglycan in human tissues and cultured cells. J Biol Chem 275:22339–22347

    Article  CAS  PubMed  Google Scholar 

  • Li S, Van Den DC, D'Souza SJ, Chan BM, Pickering JG (2003) Vascular smooth muscle cells orchestrate the assembly of type I collagen via alpha2beta1 integrin, RhoA, and fibronectin polymerization. Am J Pathol 163:1045–1056

    Article  CAS  PubMed  Google Scholar 

  • Li SW, Prockop DJ, Helminen H, Fassler R, Lapvetelainen T, Kiraly K, Peltarri A, Arokoski J, Lui H, Arita M (1995a) Transgenic mice with targeted inactivation of the Col2 alpha 1 gene for collagen II develop a skeleton with membranous and periosteal bone but no endochondral bone. Genes Dev 9:2821–2830

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Lacerda DA, Warman ML, Beier DR, Yoshioka H, Ninomiya Y, Oxford JT, Morris NP, Andrikopoulos K, Ramirez F (1995b) A fibrillar collagen gene, Col11a1, is essential for skeletal morphogenesis. Cell 80:423–430

    Article  CAS  PubMed  Google Scholar 

  • Linsenmayer T, Gibney E, Igoe F, Gordon M, Fitch J, Fessler L, Birk D (1993) Type V collagen: molecular structure and fibrillar organization of the chicken alpha 1(V) NH2-terminal domain, a putative regulator of corneal fibrillogenesis. J Cell Biol 121:1181–1189

    Article  CAS  PubMed  Google Scholar 

  • Liu CY, Birk DE, Hassell JR, Kane B, Kao WW (2003) Keratocan-deficient mice display alterations in corneal structure. J Biol Chem 278:21672–21677

    Article  CAS  PubMed  Google Scholar 

  • Malfait F, De PA (2009) Bleeding in the heritable connective tissue disorders: mechanisms, diagnosis and treatment. Blood Rev 23:191–197

    Article  CAS  PubMed  Google Scholar 

  • Mao JR, Taylor G, Dean WB, Wagner DR, Afzal V, Lotz JC, Rubin EM, Bristow J (2002) Tenascin-X deficiency mimics Ehlers–Danlos syndrome in mice through alteration of collagen deposition. Nat Genet 30:421–425

    Article  CAS  PubMed  Google Scholar 

  • Mao Y, Schwarzbauer JE (2005) Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biol 24:389–399

    Article  CAS  PubMed  Google Scholar 

  • Marchant JK, Hahn RA, Linsenmayer TF, Birk DE (1996) Reduction of type V collagen using a dominant-negative strategy alters the regulation of fibrillogenesis and results in the loss of corneal-specific fibril morphology. J Cell Biol 135:1415–1426

    Article  CAS  PubMed  Google Scholar 

  • Marini JC, Cabral WA, Barnes AM (2010) Null mutations in LEPRE1 and CRTAP cause severe recessive osteogenesis imperfecta. Cell Tissue Res 339:59–70

    Article  CAS  PubMed  Google Scholar 

  • Marneros AG, Keene DR, Hansen U, Fukai N, Moulton K, Goletz PL, Moiseyev G, Pawlyk BS, Halfter W, Dong S, Shibata M, Li T, Crouch RK, Bruckner P, Olsen BR (2004) Collagen XVIII/endostatin is essential for vision and retinal pigment epithelial function. EMBO J 23:89–99

    Article  CAS  PubMed  Google Scholar 

  • McDonald JA, Kelley DG, Broekelmann TJ (1982) Role of fibronectin in collagen deposition: Fab’ to the gelatin-binding domain of fibronectin inhibits both fibronectin and collagen organization in fibroblast extracellular matrix. J Cell Biol 92:485–492

    Article  CAS  PubMed  Google Scholar 

  • Mendler M, Eich-Bender SG, Vaughan L, Winterhalter KH, Bruckner P (1989) Cartilage contains mixed fibrils of collagen types II, IX, and XI. J Cell Biol 108:191–197

    Article  CAS  PubMed  Google Scholar 

  • Muller-Glauser W, Humbel B, Glatt M, Strauli P, Winterhalter KH, Bruckner P (1986) On the role of type IX collagen in the extracellular matrix of cartilage: type IX collagen is localized to intersections of collagen fibrils. J Cell Biol 102:1931–1939

    Article  CAS  PubMed  Google Scholar 

  • Myers JC, Yang H, D’Ippolito JA, Presente A, Miller MK, Dion AS (1994) The triple-helical region of human type XIX collagen consists of multiple collagenous subdomains and exhibits limited sequence homology to alpha 1(XVI). J Biol Chem 269:18549–18557

    CAS  PubMed  Google Scholar 

  • Myllyharju J, Kivirikko KI (2004) Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet 20:33–43

    Article  CAS  PubMed  Google Scholar 

  • Notbohm H, Nokelainen M, Myllyharju J, Fietzek PP, Muller PK, Kivirikko KI (1999) Recombinant human type II collagens with low and high levels of hydroxylysine and its glycosylated forms show marked differences in fibrillogenesis in vitro. J Biol Chem 274:8988–8992

    Article  CAS  PubMed  Google Scholar 

  • Okuyama K, Hongo C, Wu G, Mizuno K, Noguchi K, Ebisuzaki S, Tanaka Y, Nishino N, Bachinger HP (2009) High-resolution structures of collagen-like peptides [(Pro-Pro-Gly)4-Xaa-Yaa-Gly-(Pro-Pro-Gly)4]: implications for triple-helix hydration and Hyp(X) puckering. Biopolymers 91:361–372

    Article  CAS  PubMed  Google Scholar 

  • Pan TC, Zhang RZ, Mattei MG, Timpl R, Chu ML (1992) Cloning and chromosomal location of human alpha 1(XVI) collagen. Proc Natl Acad Sci USA 89:6565–6569

    Article  CAS  PubMed  Google Scholar 

  • Poole CA (1992) Chondrons-the chondrocyte and its pericellular microenvironment. In: Kuettner KE, Schleyerbach R, Peyron JG, Hascall VC (eds) Articular cartilage and osteoarthritis. Raven, New York, pp 210–220

    Google Scholar 

  • Rehn M, Hintikka E, Pihlajaniemi T (1994) Primary structure of the alpha 1 chain of mouse type XVIII collagen, partial structure of the corresponding gene, and comparison of the alpha 1(XVIII) chain with its homologue, the alpha 1(XV) collagen chain. J Biol Chem 269: 13929–13935

    CAS  PubMed  Google Scholar 

  • Sawada H, Konomi H, Hirosawa K (1990) Characterization of the collagen in the hexagonal lattice of Descemet’s membrane: its relation to type VIII collagen. J Cell Biol 110:219–227

    Article  CAS  PubMed  Google Scholar 

  • Schalkwijk J, Zweers MC, Steijlen PM, Dean WB, Taylor G, van Vlijmen IM, van Haren B, Miller WL, Bristow J (2001) A recessive form of the Ehlers-Danlos syndrome caused by tenascin-X deficiency. N Engl J Med 345:1167–1175

    Article  CAS  PubMed  Google Scholar 

  • Seegmiller R, Fraser FC, Sheldon H (1971) A new chondrodystrophic mutant in mice. Electron microscopy of normal and abnormal chondrogenesis. J Cell Biol 48:580–593

    Article  CAS  PubMed  Google Scholar 

  • Segev F, Heon E, Cole WG, Wenstrup RJ, Young F, Slomovic AR, Rootman DS, Whitaker-Menezes D, Chervoneva I, Birk DE (2006) Structural abnormalities of the cornea and lid resulting from collagen V mutations. Invest Ophthalmol Vis Sci 47:565–573

    Article  PubMed  Google Scholar 

  • Shoulders MD, Raines RT (2009) Collagen structure and stability. Annu Rev Biochem 78: 929–958

    Article  CAS  PubMed  Google Scholar 

  • Shuttleworth CA (1997) Type VIII collagen. Int J Biochem Cell Biol 29:1145–1148

    Article  CAS  PubMed  Google Scholar 

  • Silver FH, Birk DE (1984) Molecular structure of collagen in solution: comparison of types I, II, III and V. Int J Biol Macromol 6:125–132

    Article  CAS  Google Scholar 

  • Steinmann B, Bruckner P, Superti-Furga A (1991) Cyclosporin a slows collagen triple-helix formation in vivo: indirect evidence for a physiologic role of peptidyl-prolyl cis-trans-isomerase. J Biol Chem 266:1299–1303

    CAS  PubMed  Google Scholar 

  • Stephan S, Sherratt MJ, Hodson N, Shuttleworth CA, Kielty CM (2004) Expression and supramolecular assembly of recombinant alpha1(viii) and alpha2(viii) collagen homotrimers. J Biol Chem 279:21469–21477

    Article  CAS  PubMed  Google Scholar 

  • Suzuki OT, Sertié AL, Der Kaloustian VM, Kok F, Carpenter M, Murray J, Czeizel AE, Kliemann SE, Rosemberg S, Monteiro M, Olsen BR, Passos-Bueno MR (2002) Molecular analysis of collagen XVIII reveals novel mutations, presence of a third isoform, and possible genetic heterogeneity in Knobloch syndrome. Am J Hum Genet 71:1320–1329

    Article  CAS  PubMed  Google Scholar 

  • Torre-Blanco A, Adachi E, Hojima Y, Wootton JA, Minor RR, Prockop DJ (1992) Temperature-induced post-translational over-modification of type I procollagen. Effects of over-modification of the protein on the rate of cleavage by procollagen N-proteinase and on self-assembly of collagen into fibrils. J Biol Chem 267:2650–2655

    CAS  PubMed  Google Scholar 

  • Trelstad RL, Hayashi K (1979) Tendon collagen fibrillogenesis: intracellular subassemblies and cell surface changes associated with fibril growth. Dev Biol 71:228–242

    Article  CAS  PubMed  Google Scholar 

  • Villone D, Fritsch A, Koch M, Bruckner-Tuderman L, Hansen U, Bruckner P (2008) Supramolecular interactions in the dermo-epidermal junction zone: anchoring fibril-collagen VII tightly binds to banded collagen fibrils. J Biol Chem 283:24506–24513

    Article  CAS  PubMed  Google Scholar 

  • Vogel BE, Doelz R, Kadler KE, Hojima Y, Engel J, Prockop DJ (1988) A substitution of cysteine for glycine 748 of the alpha 1 chain produces a kink at this site in the procollagen I molecule and an altered N-proteinase cleavage site over 225 nm away. J Biol Chem 263:19249–19255

    CAS  PubMed  Google Scholar 

  • von der Mark H, Aumailley M, Wick G, Fleischmajer R, Timpl R (1984) Immunochemistry, genuine size and tissue localization of collagen VI. Eur J Biochem 142:493–502

    Article  PubMed  Google Scholar 

  • Wenstrup RJ, Florer JB, Brunskill EW, Bell SM, Chervoneva I, Birk DE (2004a) Type V collagen controls the initiation of collagen fibril assembly. J Biol Chem 279:53331–53337

    Article  CAS  PubMed  Google Scholar 

  • Wenstrup RJ, Florer JB, Cole WG, Willing MC, Birk DE (2004b) Reduced type I collagen utilization: a pathogenic mechanism in COL5A1 haplo-insufficient Ehlers-Danlos syndrome. J Cell Biochem 92:113–124

    Article  CAS  PubMed  Google Scholar 

  • Wiberg C, Heinegard D, Wenglen C, Timpl R, Morgelin M (2002) Biglycan organizes collagen VI into hexagonal-like networks resembling tissue structures. J Biol Chem 277:49120–49126

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi N, Mayne R, Ninomiya Y (1991) The alpha 1 (VIII) collagen gene is homologous to the alpha 1 (X) collagen gene and contains a large exon encoding the entire triple helical and carboxyl-terminal non-triple helical domains of the alpha 1 (VIII) polypeptide. J Biol Chem 266:4508–4513

    CAS  PubMed  Google Scholar 

  • Yoshioka H, Zhang H, Ramirez F, Mattei MG, Moradi-Ameli M, van der Rest M, Gordon MK (1992) Synteny between the loci for a novel FACIT-like collagen locus (D6S228E) and alpha 1 (IX) collagen (COL9A1) on 6q12-q14 in humans. Genomics 13:884–886

    Article  CAS  PubMed  Google Scholar 

  • Young BB, Gordon MK, Birk DE (2000) Expression of type XIV collagen in developing chicken tendons: association with assembly and growth of collagen fibrils. Dev Dyn 217:430–439

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Chen S, Goldoni S, Calder BW, Simpson HC, Owens RT, McQuillan DJ, Young MF, Iozzo RV, Birk DE (2009) Genetic evidence for the coordinated regulation of collagen fibrillogenesis in the cornea by decorin and biglycan. J Biol Chem 284:8888–8897

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Young BB, Ezura Y, Favata M, Soslowsky LJ, Chakravarti S, Birk DE (2005) Development of tendon structure and function: regulation of collagen fibrillogenesis. J Musculoskelet Neuronal Interact 5:5–21

    CAS  PubMed  Google Scholar 

  • Zhong C, Chrzanowska-Wodnicka M, Brown J, Shaub A, Belkin AM, Burridge K (1998) Rho-mediated contractility exposes a cryptic site in fibronectin and induces fibronectin matrix assembly. J Cell Biol 141:539–551

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work from the author’s laboratories was supported by grants from the National Institutes of Health, EY05129, AR44745, and AR55543 as well as by grants from Deutsche Forschungsgemeinschaft, Collaborative Research Centre 492, Projects A2, B9, and B18. Andre Holmes is gratefully acknowledged for his help in preparing the illustrations and Sheila Adams for the preparation of the electron micrographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Birk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Birk, D.E., Brückner, P. (2011). Collagens, Suprastructures, and Collagen Fibril Assembly. In: Mecham, R. (eds) The Extracellular Matrix: an Overview. Biology of Extracellular Matrix. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16555-9_3

Download citation

Publish with us

Policies and ethics