Skip to main content

Matricellular Proteins

  • Chapter
  • First Online:
The Extracellular Matrix: an Overview

Part of the book series: Biology of Extracellular Matrix ((BEM))

Abstract

In addition to its major structural elements, extracellular matrix contains a number of factors that are important for orchestrating developmental morphogenesis, maintaining tissue homeostasis in adults, and regenerating tissue following injury. Several proteins that serve these functions share a complex modular structure that enables them to interact with specific components of the matrix while engaging specific cell surface receptors through which they control cell behavior. These have been named matricellular proteins. Matricellular proteins, including the thrombospondins, some thrombospondin-repeat superfamily members, tenascins, SPARC, CCN proteins, and SIBLING proteins, are increasingly recognized to play important roles in inherited disorders, responses to injury and stress, and the pathogenesis of several chronic diseases of aging. Improved understanding of the functions and mechanisms of action of matricellular proteins is beginning to yield novel therapeutic strategies for prevention or treatment of these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu JG, Ketpura NI, Reversade B, De Robertis EM (2002) Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-beta. Nat Cell Biol 4:599–604

    CAS  PubMed  Google Scholar 

  • Adams JC, Tucker RP (2000) The thrombospondin type 1 repeat (TSR) superfamily: diverse proteins with related roles in neuronal development. Dev Dyn 218:280–299

    Article  CAS  PubMed  Google Scholar 

  • Adams JC, Bentley AA, Kvansakul M, Hatherley D, Hohenester E (2008) Extracellular matrix retention of thrombospondin 1 is controlled by its conserved C-terminal region. J Cell Sci 121:784–795

    Article  CAS  PubMed  Google Scholar 

  • Adolph KW, Liska DJ, Bornstein P (1997) Analysis of the promoter and transcription start sites of the human thrombospondin 2 gene (THBS2). Gene 193:5–11

    Article  CAS  PubMed  Google Scholar 

  • Agah A, Kyriakides TR, Lawler J, Bornstein P (2002) The lack of thrombospondin-1 (TSP1) dictates the course of wound healing in double-TSP1/TSP2-null mice. Am J Pathol 161:831–839

    Article  CAS  PubMed  Google Scholar 

  • Agah A, Kyriakides TR, Letrondo N, Bjorkblom B, Bornstein P (2004) Thrombospondin 2 levels are increased in aged mice: consequences for cutaneous wound healing and angiogenesis. Matrix Biol 22:539–547

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal BB (2003) Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 3:745–756

    Article  CAS  PubMed  Google Scholar 

  • Aiken ML, Ginsberg MH, Plow EF (1986) Identification of a new class of inducible receptors on platelets. Thrombospondin interacts with platelets via a GPIIb-IIIa-independent mechanism. J Clin Invest 78:1713–1716

    Article  CAS  PubMed  Google Scholar 

  • Alford AI, Terkhorn SP, Reddy AB, Hankenson KD (2009) Thrombospondin-2 regulates matrix mineralization in MC3T3-E1 pre-osteoblasts. Bone 46:464–471

    Article  PubMed  CAS  Google Scholar 

  • Apte SS (2009) A disintegrin-like and metalloprotease (reprolysin-type) with thrombospondin type 1 motif (ADAMTS) superfamily-functions and mechanisms. J Biol Chem 284(46):31493–31497

    Article  CAS  PubMed  Google Scholar 

  • Arber S, Caroni P (1995) Thrombospondin-4, an extracellular matrix protein expressed in the developing and adult nervous system promotes neurite outgrowth. J Cell Biol 131:1083–1094

    Article  CAS  PubMed  Google Scholar 

  • Armstrong DJ, Hiscott P, Batterbury M, Kaye S (2002a) Corneal stromal cells (keratocytes) express thrombospondins 2 and 3 in wound repair phenotype. Int J Biochem Cell Biol 34:588–593

    Article  CAS  PubMed  Google Scholar 

  • Armstrong LC, Bjorkblom B, Hankenson KD, Siadak AW, Stiles CE, Bornstein P (2002b) Thrombospondin 2 inhibits microvascular endothelial cell proliferation by a caspase-independent mechanism. Mol Biol Cell 13:1893–1905

    Article  CAS  PubMed  Google Scholar 

  • Arnold SA, Brekken RA (2009) SPARC: a matricellular regulator of tumorigenesis. J Cell Commun Signal 3(3–4):255–273

    Article  PubMed  Google Scholar 

  • Asselbergs FW, Pai JK, Pischon T, Manson JE, Rimm EB (2006) Thrombospondin-4 Ala387Pro polymorphism is not associated with vascular function and risk of coronary heart disease in US men and women. Thromb Haemost 95:589–590

    CAS  PubMed  Google Scholar 

  • Athanasopoulos AN, Schneider D, Keiper T, Alt V, Pendurthi UR, Liegibel UM, Sommer U, Nawroth PP, Kasperk C, Chavakis T (2007) Vascular endothelial growth factor (VEGF)-induced up-regulation of CCN1 in osteoblasts mediates proangiogenic activities in endothelial cells and promotes fracture healing. J Biol Chem 282:26746–26753

    Article  CAS  PubMed  Google Scholar 

  • Bagavandoss P, Wilks JW (1990) Specific inhibition of endothelial cell proliferation by thrombospondin. Biochem Biophys Res Commun 170:867–872

    Article  CAS  PubMed  Google Scholar 

  • Baguma-Nibasheka M, Kablar B (2008) Pulmonary hypoplasia in the connective tissue growth factor (Ctgf) null mouse. Dev Dyn 237:485–493

    Article  CAS  PubMed  Google Scholar 

  • Baker LH, Rowinsky EK, Mendelson D, Humerickhouse RA, Knight RA, Qian J, Carr RA, Gordon GB, Demetri GD (2008) Randomized, phase II study of the thrombospondin-1-mimetic angiogenesis inhibitor ABT-510 in patients with advanced soft tissue sarcoma. J Clin Oncol 26:5583–5588

    Article  CAS  PubMed  Google Scholar 

  • Banerjee S, Dhar G, Haque I, Kambhampati S, Mehta S, Sengupta K, Tawfik O, Phillips TA, Banerjee SK (2008) CCN5/WISP-2 expression in breast adenocarcinoma is associated with less frequent progression of the disease and suppresses the invasive phenotypes of tumor cells. Cancer Res 68:7606–7612

    Article  CAS  PubMed  Google Scholar 

  • Bein K, Ware JA, Simons M (1998) Myb-dependent regulation of thrombospondin 2 expression. Role of mRNA stability. J Biol Chem 273:21423–21429

    Article  CAS  PubMed  Google Scholar 

  • Bellahcene A, Castronovo V, Ogbureke KU, Fisher LW, Fedarko NS (2008) Small integrin-binding ligand N-linked glycoproteins (SIBLINGs): multifunctional proteins in cancer. Nat Rev Cancer 8:212–226

    Article  CAS  PubMed  Google Scholar 

  • Bennewith KL, Huang X, Ham CM, Graves EE, Erler JT, Kambham N, Feazell J, Yang GP, Koong A, Giaccia AJ (2009) The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth. Cancer Res 69:775–784

    Article  CAS  PubMed  Google Scholar 

  • Bergmann C, Senderek J, Anhuf D, Thiel CT, Ekici AB, Poblete-Gutierrez P, van Steensel M, Seelow D, Nurnberg G, Schild HH, Nurnberg P, Reis A, Frank J, Zerres K (2006) Mutations in the gene encoding the Wnt-signaling component R-spondin 4 (RSPO4) cause autosomal recessive anonychia. Am J Hum Genet 79:1105–1109

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya S, Marinic TE, Krukovets I, Hoppe G, Stenina OI (2008) Cell type-specific post-transcriptional regulation of production of the potent antiangiogenic and proatherogenic protein thrombospondin-1 by high glucose. J Biol Chem 283:5699–5707

    Article  CAS  PubMed  Google Scholar 

  • Blaydon DC, Ishii Y, O’Toole EA, Unsworth HC, Teh MT, Ruschendorf F, Sinclair C, Hopsu-Havu VK, Tidman N, Moss C, Watson R, de Berker D, Wajid M, Christiano AM, Kelsell DP (2006) The gene encoding R-spondin 4 (RSPO4), a secreted protein implicated in Wnt signaling, is mutated in inherited anonychia. Nat Genet 38:1245–1247

    Article  CAS  PubMed  Google Scholar 

  • Bondeson J, Wainwright S, Hughes C, Caterson B (2008) The regulation of the ADAMTS4 and ADAMTS5 aggrecanases in osteoarthritis: a review. Clin Exp Rheumatol 26:139–145

    CAS  PubMed  Google Scholar 

  • Bonnefoy A, Daenens K, Feys HB, De Vos R, Vandervoort P, Vermylen J, Lawler J, Hoylaerts MF (2006) Thrombospondin-1 controls vascular platelet recruitment and thrombus adherence in mice by protecting (sub)endothelial VWF from cleavage by ADAMTS13. Blood 107:955–964

    Article  CAS  PubMed  Google Scholar 

  • Bornstein P (1995) Diversity of function is inherent in matricellular proteins: an appraisal of thrombospondin 1. J Cell Biol 130:503–506

    Article  CAS  PubMed  Google Scholar 

  • Bornstein P, Armstrong LC, Hankenson KD, Kyriakides TR, Yang Z (2000) Thrombospondin 2, a matricellular protein with diverse functions. Matrix Biol 19:557–568

    Article  CAS  PubMed  Google Scholar 

  • Boukerche H, McGregor JL (1988) Characterization of an anti-thrombospondin monoclonal antibody (P8) that inhibits human blood platelet functions. Normal binding of P8 to thrombin-activated Glanzmann thrombasthenic platelets. Eur J Biochem 171:383–392

    Article  CAS  PubMed  Google Scholar 

  • Bradham DM, Igarashi A, Potter RL, Grotendorst GR (1991) Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10. J Cell Biol 114:1285–1294

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw AD (2009) The role of SPARC in extracellular matrix assembly. J Cell Commun Signal 3(3–4):239–246

    Article  PubMed  Google Scholar 

  • Bradshaw AD, Sage EH (2001) SPARC, a matricellular protein that functions in cellular differentiation and tissue response to injury. J Clin Invest 107:1049–1054

    Article  CAS  PubMed  Google Scholar 

  • Brechot N, Gomez E, Bignon M, Khallou-Laschet J, Dussiot M, Cazes A, Alanio-Brechot C, Durand M, Philippe J, Silvestre JS, Van Rooijen N, Corvol P, Nicoletti A, Chazaud B, Germain S (2008) Modulation of macrophage activation state protects tissue from necrosis during critical limb ischemia in thrombospondin-1-deficient mice. PLoS ONE 3:e3950

    Article  PubMed  CAS  Google Scholar 

  • Briggs MD, Hoffman SM, King LM, Olsen AS, Mohrenweiser H, Leroy JG, Mortier GR, Rimoin DL, Lachman RS, Gaines ES et al (1995) Pseudoachondroplasia and multiple epiphyseal dysplasia due to mutations in the cartilage oligomeric matrix protein gene. Nat Genet 10:330–336

    Article  CAS  PubMed  Google Scholar 

  • Brigstock DR (1999) The connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed (CCN) family. Endocr Rev 20:189–206

    Article  CAS  PubMed  Google Scholar 

  • Brigstock DR (2009) Connective tissue growth factor (CCN2, CTGF) and organ fibrosis: lessons from transgenic animals. J Cell Commun Signal 4(1):1–4

    Article  PubMed  Google Scholar 

  • Bristow J, Carey W, Egging D, Schalkwijk J (2005) Tenascin-X, collagen, elastin, and the Ehlers–Danlos syndrome. Am J Med Genet C Semin Med Genet 139C:24–30

    Article  CAS  PubMed  Google Scholar 

  • Buee L, Hof PR, Roberts DD, Delacourte A, Morrison JH, Fillit HM (1992) Immunohistochemical identification of thrombospondin in normal human brain and in Alzheimer’s disease. Am J Pathol 141:783–788

    CAS  PubMed  Google Scholar 

  • Burke A, Creighton W, Tavora F, Li L, Fowler D (2009) Decreased frequency of the 3′UTR T > G single nucleotide polymorphism of thrombospondin-2 gene in sudden death due to plaque erosion. Cardiovasc Pathol 19(3):e45–e49

    Article  PubMed  CAS  Google Scholar 

  • Calzada MJ, Sipes JM, Krutzsch HC, Yurchenco PD, Annis DS, Mosher DF, Roberts DD (2003) Recognition of the N-terminal modules of thrombospondin-1 and thrombospondin-2 by α6β1 integrin. J Biol Chem 278:40679–40687

    Article  CAS  PubMed  Google Scholar 

  • Calzada MJ, Annis DS, Zeng B, Marcinkiewicz C, Banas B, Lawler J, Mosher DF, Roberts DD (2004a) Identification of novel beta1 integrin binding sites in the type 1 and type 2 repeats of thrombospondin-1. J Biol Chem 279:41734–41743

    Article  CAS  PubMed  Google Scholar 

  • Calzada MJ, Zhou L, Sipes JM, Zhang J, Krutzsch HC, Iruela-Arispe ML, Annis DS, Mosher DF, Roberts DD (2004b) α4β1 integrin mediates selective endothelial cell responses to thrombospondins in vitro and modulates angiogenesis in vivo. Circ Res 94:462–470

    Article  CAS  PubMed  Google Scholar 

  • Canalis E, Smerdel-Ramoya A, Durant D, Economides AN, Beamer WG, Zanotti S (2010) Nephroblastoma overexpressed (Nov) inactivation sensitizes osteoblasts to bone morphogenetic protein-2, but nov is dispensable for skeletal homeostasis. Endocrinology 151:221–233

    Article  CAS  PubMed  Google Scholar 

  • Carlson CB, Lawler J, Mosher DF (2008) Structures of thrombospondins. Cell Mol Life Sci 65:672–686

    Article  CAS  PubMed  Google Scholar 

  • Carron JA, Hiscott P, Hagan S, Sheridan CM, Magee R, Gallagher JA (2000) Cultured human retinal pigment epithelial cells differentially express thrombospondin-1, -2, -3, and -4. Int J Biochem Cell Biol 32:1137–1142

    Article  CAS  PubMed  Google Scholar 

  • Chanana B, Graf R, Koledachkina T, Pflanz R, Vorbruggen G (2007) AlphaPS2 integrin-mediated muscle attachment in Drosophila requires the ECM protein thrombospondin. Mech Dev 124:463–475

    Article  CAS  PubMed  Google Scholar 

  • Chen CC, Lau LF (2009) Functions and mechanisms of action of CCN matricellular proteins. Int J Biochem Cell Biol 41:771–783

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Sottile J, O’Rourke KM, Dixit VM, Mosher DF (1994) Properties of recombinant mouse thrombospondin 2 expressed in Spodoptera cells. J Biol Chem 269:32226–32232

    CAS  PubMed  Google Scholar 

  • Chen H, Aeschlimann D, Nowlen J, Mosher DF (1996) Expression and initial characterization of recombinant mouse thrombospondin 1 and thrombospondin 3. FEBS Lett 387:36–41

    Article  CAS  PubMed  Google Scholar 

  • Chen CC, Chen N, Lau LF (2001) The angiogenic factors Cyr61 and CTGF induce adhesive signaling in primary human skin fibroblasts. J Biol Chem 276:10443–10452

    Article  CAS  PubMed  Google Scholar 

  • Chen N, Leu SJ, Todorovic V, Lam SCT, Lau LF (2004) Identification of a novel integrin αvβ3 binding site in CCN1 (CYR61) critical for pro-angiogenic activities in vascular endothelial cells. J Biol Chem 279:44166–44176

    Article  CAS  PubMed  Google Scholar 

  • Chen FH, Thomas AO, Hecht JT, Goldring MB, Lawler J (2005) Cartilage oligomeric matrix protein/thrombospondin 5 supports chondrocyte attachment through interaction with integrins. J Biol Chem 280:32655–32661

    Article  CAS  PubMed  Google Scholar 

  • Chen CC, Young JL, Monzon RI, Chen N, Todorovic V, Lau LF (2007a) Cytotoxicity of TNFα is regulated by integrin-mediated matrix signaling. EMBO J 26:1257–1267

    Article  CAS  PubMed  Google Scholar 

  • Chen FH, Herndon ME, Patel N, Hecht JT, Tuan RS, Lawler J (2007b) Interaction of cartilage oligomeric matrix protein/thrombospondin 5 with aggrecan. J Biol Chem 282:24591–24598

    Article  CAS  PubMed  Google Scholar 

  • Cheng YC, Liang CM, Chen YP, Tsai IH, Kuo CC, Liang SM (2009) F-spondin plays a critical role in murine neuroblastoma survival by maintaining IL-6 expression. J Neurochem 110:947–955

    Article  CAS  PubMed  Google Scholar 

  • Chijiwa T, Abe Y, Inoue Y, Matsumoto H, Kawai K, Matsuyama M, Miyazaki N, Inoue H, Mukai M, Ueyama Y, Nakamura M (2009) Cancerous, but not stromal, thrombospondin-2 contributes prognosis in pulmonary adenocarcinoma. Oncol Rep 22:279–283

    CAS  PubMed  Google Scholar 

  • Chiquet-Ehrismann R, Chiquet M (2003) Tenascins: regulation and putative functions during pathological stress. J Pathol 200:488–499

    Article  CAS  PubMed  Google Scholar 

  • Cho HJ, Cho HJ, Kim HS (2009) Osteopontin: a multifunctional protein at the crossroads of inflammation, atherosclerosis, and vascular calcification. Curr Atheroscler Rep 11:206–213

    Article  CAS  PubMed  Google Scholar 

  • Christopherson KS, Ullian EM, Stokes CC, Mullowney CE, Hell JW, Agah A, Lawler J, Mosher DF, Bornstein P, Barres BA (2005) Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120:421–433

    Article  CAS  PubMed  Google Scholar 

  • Cicha I, Garlichs CD, Daniel WG, Goppelt-Struebe M (2004) Activated human platelets release connective tissue growth factor. Thromb Haemost 91:755–760

    CAS  PubMed  Google Scholar 

  • Crawford SE, Stellmach V, Murphy-Ullrich JE, Ribeiro SMF, Lawler J, Hynes RO, Boivin GP, Bouck N (1998) Thrombospondin-1 is a major activator of TGF-β1 in vivo. Cell 93:1159–1170

    Article  CAS  PubMed  Google Scholar 

  • Crawford LA, Guney MA, Oh YA, Deyoung RA, Valenzuela DM, Murphy AJ, Yancopoulos GD, Lyons KM, Brigstock DR, Economides A, Gannon M (2009) Connective tissue growth factor (CTGF) inactivation leads to defects in islet cell lineage allocation and beta-cell proliferation during embryogenesis. Mol Endocrinol 23:324–336

    Article  CAS  PubMed  Google Scholar 

  • Cui J, Randell E, Renouf J, Sun G, Green R, Han FY, Xie YG (2006) Thrombospondin-4 1186 G > C (A387P) is a sex-dependent risk factor for myocardial infarction: a large replication study with increased sample size from the same population. Am Heart J 152(543):e541–e545

    Google Scholar 

  • Czekierdowski A, Czekierdowska S, Danilos J, Czuba B, Sodowski K, Sodowska H, Szymanski M, Kotarski J (2008) Microvessel density and CpG island methylation of the THBS2 gene in malignant ovarian tumors. J Physiol Pharmacol 59(Suppl 4):53–65

    PubMed  Google Scholar 

  • Dabir P, Marinic TE, Krukovets I, Stenina OI (2008) Aryl hydrocarbon receptor is activated by glucose and regulates the thrombospondin-1 gene promoter in endothelial cells. Circ Res 102:1558–1565

    Article  CAS  PubMed  Google Scholar 

  • Dalla-Torre CA, Yoshimoto M, Lee CH, Joshua AM, de Toledo SR, Petrilli AS, Andrade JA, Chilton-MacNeill S, Zielenska M, Squire JA (2006) Effects of THBS3, SPARC and SPP1 expression on biological behavior and survival in patients with osteosarcoma. BMC Cancer 6:237

    Article  PubMed  CAS  Google Scholar 

  • Daniel C, Amann K, Hohenstein B, Bornstein P, Hugo C (2007) Thrombospondin 2 functions as an endogenous regulator of angiogenesis and inflammation in experimental glomerulonephritis in mice. J Am Soc Nephrol 18:788–798

    Article  CAS  PubMed  Google Scholar 

  • Daniel C, Wagner A, Hohenstein B, Hugo C (2009) Thrombospondin-2 therapy ameliorates experimental glomerulonephritis via inhibition of cell proliferation, inflammation, and TGF-beta activation. Am J Physiol Renal Physiol 297:F1299–F1309

    Article  CAS  PubMed  Google Scholar 

  • Dawson DW, Pearce SF, Zhong R, Silverstein RL, Frazier WA, Bouck NP (1997) CD36 mediates the in vitro inhibitory effects of thrombospondin-1 on endothelial cells. J Cell Biol 138:707–717

    Article  CAS  PubMed  Google Scholar 

  • Dawson DW, Volpert OV, Pearce SF, Schneider AJ, Silverstein RL, Henkin J, Bouck NP (1999) Three distinct d-amino acid substitutions confer potent antiangiogenic activity on an inactive peptide derived from a thrombospondin-1 type 1 repeat. Mol Pharmacol 55:332–338

    CAS  PubMed  Google Scholar 

  • Dean RA, Butler GS, Hamma-Kourbali Y, Delbe J, Brigstock DR, Courty J, Overall CM (2007) Identification of candidate angiogenic inhibitors processed by matrix metalloproteinase 2 (MMP-2) in cell-based proteomic screens: disruption of vascular endothelial growth factor (VEGF)/heparin affin regulatory peptide (pleiotrophin) and VEGF/connective tissue growth factor angiogenic inhibitory complexes by MMP-2 proteolysis. Mol Cell Biol 27:8454–8465

    Article  CAS  PubMed  Google Scholar 

  • Delany AM, Hankenson KD (2009) Thrombospondin-2 and SPARC/osteonectin are critical regulators of bone remodeling. J Cell Commun Signal 3(3–4):227–238

    Article  PubMed  Google Scholar 

  • Delany AM, McMahon DJ, Powell JS, Greenberg DA, Kurland ES (2008) Osteonectin/SPARC polymorphisms in Caucasian men with idiopathic osteoporosis. Osteoporos Int 19:969–978

    Article  CAS  PubMed  Google Scholar 

  • Duisters RF, Tijsen AJ, Schroen B, Leenders JJ, Lentink V, van der Made I, Herias V, van Leeuwen RE, Schellings MW, Barenbrug P, Maessen JG, Heymans S, Pinto YM, Creemers EE (2009) miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res 104:170–178

    Article  CAS  PubMed  Google Scholar 

  • Ebbinghaus S, Hussain M, Tannir N, Gordon M, Desai AA, Knight RA, Humerickhouse RA, Qian J, Gordon GB, Figlin R (2007) Phase 2 study of ABT-510 in patients with previously untreated advanced renal cell carcinoma. Clin Cancer Res 13:6689–6695

    Article  CAS  PubMed  Google Scholar 

  • Egging D, van Vlijmen-Willems I, van Tongeren T, Schalkwijk J, Peeters A (2007) Wound healing in tenascin-X deficient mice suggests that tenascin-X is involved in matrix maturation rather than matrix deposition. Connect Tissue Res 48:93–98

    Article  CAS  PubMed  Google Scholar 

  • Elefteriou F, Exposito JY, Garrone R, Lethias C (2001) Binding of tenascin-X to decorin. FEBS Lett 495:44–47

    Article  CAS  PubMed  Google Scholar 

  • Elola MT, Wolfenstein-Todel C, Troncoso MF, Vasta GR, Rabinovich GA (2007) Galectins: matricellular glycan-binding proteins linking cell adhesion, migration, and survival. Cell Mol Life Sci 64:1679–1700

    Article  CAS  PubMed  Google Scholar 

  • Elzie CA, Murphy-Ullrich JE (2004) The N-terminus of thrombospondin: the domain stands apart. Int J Biochem Cell Biol 36:1090–1101

    Article  CAS  PubMed  Google Scholar 

  • Esposito I, Kayed H, Keleg S, Giese T, Sage EH, Schirmacher P, Friess H, Kleeff J (2007) Tumor-suppressor function of SPARC-like protein 1/Hevin in pancreatic cancer. Neoplasia 9:8–17

    Article  CAS  PubMed  Google Scholar 

  • Feinstein Y, Klar A (2004) The neuronal class 2 TSR proteins F-spondin and mindin: a small family with divergent biological activities. Int J Biochem Cell Biol 36:975–980

    Article  CAS  PubMed  Google Scholar 

  • Floquet N, Dedieu S, Martiny L, Dauchez M, Perahia D (2008) Human thrombospondin’s (TSP-1) C-terminal domain opens to interact with the CD-47 receptor: a molecular modeling study. Arch Biochem Biophys 478:103–109

    Article  CAS  PubMed  Google Scholar 

  • Fonseca C, Lindahl GE, Ponticos M, Sestini P, Renzoni EA, Holmes AM, Spagnolo P, Pantelidis P, Leoni P, McHugh N, Stock CJ, Shi-wen X, Denton CP, Black CM, Welsh KI, du Bois RM, Abraham DJ (2007) A polymorphism in the CTGF promoter region associated with systemic sclerosis. N Engl J Med 357:1210–1220

    Article  CAS  PubMed  Google Scholar 

  • Franzen CA, Chen CC, Todorovic V, Juric V, Monzon RI, Lau LF (2009) The matrix protein CCN1 is critical for prostate carcinoma cell proliferation and TRAIL-induced apoptosis. Mol Cancer Res 7:1045–1055

    Article  CAS  PubMed  Google Scholar 

  • Friedrichsen S, Heuer H, Christ S, Winckler M, Brauer D, Bauer K, Raivich G (2003) CTGF expression during mouse embryonic development. Cell Tissue Res 312:175–188

    CAS  PubMed  Google Scholar 

  • Furukawa K, Roberts DD, Endo T, Kobata A (1989) Structural study of the sugar chains of human platelet thrombospondin. Arch Biochem Biophys 270:302–312

    Article  CAS  PubMed  Google Scholar 

  • Gellhaus A, Schmidt M, Dunk C, Lye SJ, Kimmig R, Winterhager E (2006) Decreased expression of the angiogenic regulators CYR61 (CCN1) and NOV (CCN3) in human placenta is associated with pre-eclampsia. Mol Hum Reprod 12:389–399

    Article  CAS  PubMed  Google Scholar 

  • Gietema JA, Hoekstra R, de Vos FY, Uges DR, van der Gaast A, Groen HJ, Loos WJ, Knight RA, Carr RA, Humerickhouse RA, Eskens FA (2006) A phase I study assessing the safety and pharmacokinetics of the thrombospondin-1-mimetic angiogenesis inhibitor ABT-510 with gemcitabine and cisplatin in patients with solid tumors. Ann Oncol 17:1320–1327

    Article  CAS  PubMed  Google Scholar 

  • Good DJ, Polverini PJ, Rastinejad F, Le BM, Lemons RS, Frazier WA, Bouck NP (1990) A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci USA 87:6624–6628

    Article  CAS  PubMed  Google Scholar 

  • Greenaway J, Lawler J, Moorehead R, Bornstein P, Lamarre J, Petrik J (2007) Thrombospondin-1 inhibits VEGF levels in the ovary directly by binding and internalization via the low density lipoprotein receptor-related protein-1 (LRP-1). J Cell Physiol 210:807–818

    Article  CAS  PubMed  Google Scholar 

  • Grimbert P, Bouguermouh S, Baba N, Nakajima T, Allakhverdi Z, Braun D, Saito H, Rubio M, Delespesse G, Sarfati M (2006) Thrombospondin/CD47 interaction: a pathway to generate regulatory T cells from human CD4+ CD25-T cells in response to inflammation. J Immunol 177:3534–3541

    CAS  PubMed  Google Scholar 

  • Guerrero D, Guarch R, Ojer A, Casas JM, Ropero S, Mancha A, Pesce C, Lloveras B, Garcia-Bragado F, Puras A (2008) Hypermethylation of the thrombospondin-1 gene is associated with poor prognosis in penile squamous cell carcinoma. BJU Int 102(6):747–755

    Article  CAS  PubMed  Google Scholar 

  • Guo NH, Krutzsch HC, Nègre E, Vogel T, Blake DA, Roberts DD (1992) Heparin- and sulfatide-binding peptides from the type I repeats of human thrombospondin promote melanoma cell adhesion. Proc Natl Acad Sci USA 89:3040–3044

    Article  CAS  PubMed  Google Scholar 

  • Guo N, Krutzsch HC, Inman JK, Roberts DD (1997a) Thrombospondin 1 and type I repeat peptides of thrombospondin 1 specifically induce apoptosis of endothelial cells. Cancer Res 57:1735–1742

    CAS  PubMed  Google Scholar 

  • Guo NH, Krutzsch HC, Inman JK, Shannon CS, Roberts DD (1997b) Antiproliferative and antitumor activities of D-reverse peptides derived from the second type-1 repeat of thrombospondin-1. J Pept Res 50:210–221

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Hong D, Iborra F, Sarno S, Enver T (2007) NOV (CCN3) functions as a regulator of human hematopoietic stem or progenitor cells. Science 316:590–593

    Article  CAS  PubMed  Google Scholar 

  • Halasz K, Kassner A, Morgelin M, Heinegard D (2007) COMP acts as a catalyst in collagen fibrillogenesis. J Biol Chem 282:31166–31173

    Article  CAS  PubMed  Google Scholar 

  • Han S, Guthridge JM, Harley IT, Sestak AL, Kim-Howard X, Kaufman KM, Namjou B, Deshmukh H, Bruner G, Espinoza LR, Gilkeson GS, Harley JB, James JA, Nath SK (2008) Osteopontin and systemic lupus erythematosus association: a probable gene–gender interaction. PLoS ONE 3:e0001757

    Article  PubMed  CAS  Google Scholar 

  • Hancox RA, Allen MD, Holliday DL, Edwards DR, Pennington CJ, Guttery DS, Shaw JA, Walker RA, Pringle JH, Jones JL (2009) Tumour-associated tenascin-C isoforms promote breast cancer cell invasion and growth by matrix metalloproteinase-dependent and independent mechanisms. Breast Cancer Res 11:R24

    Article  PubMed  CAS  Google Scholar 

  • Hankenson KD, Bornstein P (2002) The secreted protein thrombospondin 2 is an autocrine inhibitor of marrow stromal cell proliferation. J Bone Miner Res 17:415–425

    Article  CAS  PubMed  Google Scholar 

  • Hankenson KD, Hormuzdi SG, Meganck JA, Bornstein P (2005) Mice with a disruption of the thrombospondin 3 gene differ in geometric and biomechanical properties of bone and have accelerated development of the femoral head. Mol Cell Biol 25:5599–5606

    Article  CAS  PubMed  Google Scholar 

  • Hauser N, Paulsson M, Kale AA, DiCesare PE (1995) Tendon extracellular matrix contains pentameric thrombospondin-4 (TSP-4). FEBS Lett 368:307–310

    Article  CAS  PubMed  Google Scholar 

  • Haviv F, Bradley MF, Kalvin DM, Schneider AJ, Davidson DJ, Majest SM, McKay LM, Haskell CJ, Bell RL, Nguyen B, Marsh KC, Surber BW, Uchic JT, Ferrero J, Wang YC, Leal J, Record RD, Hodde J, Badylak SF, Lesniewski RR, Henkin J (2005) Thrombospondin-1 mimetic peptide inhibitors of angiogenesis and tumor growth: design, synthesis, and optimization of pharmacokinetics and biological activities. J Med Chem 48:2838–2846

    Article  CAS  PubMed  Google Scholar 

  • Hawighorst T, Velasco P, Streit M, Hong YK, Kyriakides TR, Brown LF, Bornstein P, Detmar M (2001) Thrombospondin-2 plays a protective role in multistep carcinogenesis: a novel host anti-tumor defense mechanism. EMBO J 20:2631–2640

    Article  CAS  PubMed  Google Scholar 

  • Hecht JT, Nelson LD, Crowder E, Wang Y, Elder FF, Harrison WR, Francomano CA, Prange CK, Lennon GG, Deere M et al (1995) Mutations in exon 17B of cartilage oligomeric matrix protein (COMP) cause pseudoachondroplasia. Nat Genet 10:325–329

    Article  CAS  PubMed  Google Scholar 

  • Hedbom E, Antonsson P, Hjerpe A, Aeschlimann D, Paulsson M, Rosa-Pimentel E, Sommarin Y, Wendel M, Oldberg A, Heinegard D (1992) Cartilage matrix proteins. An acidic oligomeric protein (COMP) detected only in cartilage. J Biol Chem 267:6132–6136

    CAS  PubMed  Google Scholar 

  • Heinonen TY, Maki M (2009) Peters’-plus syndrome is a congenital disorder of glycosylation caused by a defect in the beta1, 3-glucosyltransferase that modifies thrombospondin type 1 repeats. Ann Med 41:2–10

    Article  CAS  PubMed  Google Scholar 

  • Ho A, Sudhof TC (2004) Binding of F-spondin to amyloid-beta precursor protein: a candidate amyloid-beta precursor protein ligand that modulates amyloid-beta precursor protein cleavage. Proc Natl Acad Sci USA 101:2548–2553

    Article  CAS  PubMed  Google Scholar 

  • Hoe HS, Wessner D, Beffert U, Becker AG, Matsuoka Y, Rebeck GW (2005) F-spondin interaction with the apolipoprotein E receptor ApoEr2 affects processing of amyloid precursor protein. Mol Cell Biol 25:9259–9268

    Article  CAS  PubMed  Google Scholar 

  • Hofsteenge J, Huwiler KG, Macek B, Hess D, Lawler J, Mosher DF, Peter-Katalinic J (2001) C-mannosylation and O-fucosylation of the thrombospondin type 1 module. J Biol Chem 276:6485–6498

    Article  CAS  PubMed  Google Scholar 

  • Holbourn KP, Acharya KR, Perbal B (2008) The CCN family of proteins: structure-function relationships. Trends Biochem Sci 33:461–473

    Article  CAS  PubMed  Google Scholar 

  • Hotchkiss KA, Matthias LJ, Hogg PJ (1998) Exposure of the cryptic Arg-Gly-Asp sequence in thrombospondin-1 by protein disulfide isomerase. Biochim Biophys Acta 1388:478–488

    Article  CAS  PubMed  Google Scholar 

  • Hurvitz JR, Suwairi WM, Van HW, El-Shanti H, Superti-Furga A, Roudier J, Holderbaum D, Pauli RM, Herd JK, Van HEV, Rezai-Delui H, Legius E, Le MM, Al-Alami J, Bahabri SA, Warman ML (1999) Mutations in the CCN gene family member WISP3 cause progressive pseudorheumatoid dysplasia. Nat Genet 23:94–98

    Article  CAS  PubMed  Google Scholar 

  • Ignarro LJ (2002) Nitric oxide as a unique signaling molecule in the vascular system: a historical overview. J Physiol Pharmacol 53:503–514

    CAS  PubMed  Google Scholar 

  • Iruela-Arispe ML, Liska DJ, Sage EH, Bornstein P (1993) Differential expression of thrombospondin 1, 2, and 3 during murine development. Dev Dyn 197:40–56

    CAS  PubMed  Google Scholar 

  • Iruela-Arispe ML, Lombardo M, Krutzsch HC, Lawler J, Roberts DD (1999) Inhibition of angiogenesis by thrombspondin-1 is mediated by two independent regions within the type 1 repeats. Circulation 100:1423–1431

    CAS  PubMed  Google Scholar 

  • Isenberg JS, Ridnour LA, Dimitry J, Frazier WA, Wink DA, Roberts DD (2006) CD47 is necessary for inhibition of nitric oxide-stimulated vascular cell responses by thrombospondin-1. J Biol Chem 281(36):26069–26080

    Article  CAS  PubMed  Google Scholar 

  • Isenberg JS, Hyodo F, Matsumoto K, Romeo MJ, Abu-Asab M, Tsokos M, Kuppusamy P, Wink DA, Krishna MC, Roberts DD (2007a) Thrombospondin-1 limits ischemic tissue survival by inhibiting nitric oxide-mediated vascular smooth muscle relaxation. Blood 109:1945–1952

    Article  CAS  PubMed  Google Scholar 

  • Isenberg JS, Hyodo F, Pappan LK, Abu-Asab M, Tsokos M, Krishna MC, Frazier WA, Roberts DD (2007b) Blocking thrombospondin-1/CD47 signaling alleviates deleterious effects of aging on tissue responses to ischemia. Arterioscler Thromb Vasc Biol 27:2582–2588

    Article  CAS  PubMed  Google Scholar 

  • Isenberg JS, Romeo MJ, Abu-Asab M, Tsokos M, Oldenborg A, Pappan L, Wink DA, Frazier WA, Roberts DD (2007c) Increasing survival of ischemic tissue by targeting CD47. Circ Res 100:712–720

    Article  CAS  PubMed  Google Scholar 

  • Isenberg JS, Maxhimer JB, Hyodo F, Pendrak ML, Ridnour LA, DeGraff WG, Tsokos M, Wink DA, Roberts DD (2008a) Thrombospondin-1 and CD47 limit cell and tissue survival of radiation injury. Am J Pathol 173:1100–1112

    Article  CAS  PubMed  Google Scholar 

  • Isenberg JS, Maxhimer JB, Powers P, Tsokos M, Frazier WA, Roberts DD (2008b) Treatment of ischemia/reperfusion injury by limiting thrombospondin-1/CD47 signaling. Surgery 144:752–761

    Article  PubMed  Google Scholar 

  • Isenberg JS, Pappan LK, Romeo MJ, Abu-Asab M, Tsokos M, Wink DA, Frazier WA, Roberts DD (2008c) Blockade of thrombospondin-1-CD47 interactions prevents necrosis of full thickness skin grafts. Ann Surg 247:180–190

    Article  PubMed  Google Scholar 

  • Isenberg JS, Romeo MJ, Maxhimer JB, Smedley J, Frazier WA, Roberts DD (2008d) Gene silencing of CD47 and antibody ligation of thrombospondin-1 enhance ischemic tissue survival in a porcine model: implications for human disease. Ann Surg 247:860–868

    Article  PubMed  Google Scholar 

  • Isenberg JS, Romeo MJ, Yu C, Yu CK, Nghiem K, Monsale J, Rick ME, Wink DA, Frazier WA, Roberts DD (2008e) Thrombospondin-1 stimulates platelet aggregation by blocking the antithrombotic activity of nitric oxide/cGMP signaling. Blood 111:613–623

    Article  CAS  PubMed  Google Scholar 

  • Isenberg JS, Yu C, Roberts DD (2008f) Differential effects of ABT-510 and a CD36-binding peptide derived from the type 1 repeats of thrombospondin-1 on fatty acid uptake, nitric oxide signaling, and caspase activation in vascular cells. Biochem Pharmacol 75:875–882

    Article  CAS  PubMed  Google Scholar 

  • Isenberg JS, Annis DS, Pendrak ML, Ptaszynska M, Frazier WA, Mosher DF, Roberts DD (2009a) Differential interactions of thrombospondin-1, -2, and -4 with CD47 and effects on cGMP signaling and ischemic injury responses. J Biol Chem 284:1116–1125

    Article  CAS  PubMed  Google Scholar 

  • Isenberg JS, Martin-Manso G, Maxhimer JB, Roberts DD (2009b) Regulation of nitric oxide signalling by thrombospondin 1: implications for anti-angiogenic therapies. Nat Rev Cancer 9:182–194

    Article  CAS  PubMed  Google Scholar 

  • Isenberg JS, Qin Y, Maxhimer JB, Sipes JM, Despres D, Schnermann J, Frazier WA, Roberts DD (2009c) Thrombospondin-1 and CD47 regulate blood pressure and cardiac responses to vasoactive stress. Matrix Biol 28:110–119

    Article  CAS  PubMed  Google Scholar 

  • Ivkovic S, Yoon BS, Popoff SN, Safadi FF, Libuda DE, Stephenson RC, Daluiski A, Lyons KM (2003) Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development 130:2779–2791

    Article  CAS  PubMed  Google Scholar 

  • Jaffe EA, Leung LL, Nachman RL, Levin RI, Mosher DF (1982) Thrombospondin is the endogenous lectin of human platelets. Nature 295:246–248

    Article  CAS  PubMed  Google Scholar 

  • Jimenez B, Volpert OV, Crawford SE, Febbraio M, Silverstein RL, Bouck N (2000) Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med 6:41–48

    Article  CAS  PubMed  Google Scholar 

  • Jones FS, Jones PL (2000) The tenascin family of ECM glycoproteins: structure, function, and regulation during embryonic development and tissue remodeling. Dev Dyn 218:235–259

    Article  CAS  PubMed  Google Scholar 

  • Jones GC, Riley GP (2005) ADAMTS proteinases: a multi-domain, multi-functional family with roles in extracellular matrix turnover and arthritis. Arthritis Res Ther 7:160–169

    Article  PubMed  Google Scholar 

  • Jun IL, Lau LF (2010) The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol 12(7):676–685

    Article  CAS  PubMed  Google Scholar 

  • Juric V, Chen CC, Lau LF (2009) Fas-mediated apoptosis is regulated by the extracellular matrix protein CCN1 (CYR61) in vitro and in vivo. Mol Cell Biol 29:3266–3279

    Article  CAS  PubMed  Google Scholar 

  • Kamata T, Katsube K, Michikawa M, Yamada M, Takada S, Mizusawa H (2004) R-spondin, a novel gene with thrombospondin type 1 domain, was expressed in the dorsal neural tube and affected in Wnts mutants. Biochim Biophys Acta 1676:51–62

    CAS  PubMed  Google Scholar 

  • Kamatani Y, Matsuda K, Ohishi T, Ohtsubo S, Yamazaki K, Iida A, Hosono N, Kubo M, Yumura W, Nitta K, Katagiri T, Kawaguchi Y, Kamatani N, Nakamura Y (2008) Identification of a significant association of a single nucleotide polymorphism in TNXB with systemic lupus erythematosus in a Japanese population. J Hum Genet 53:64–73

    Article  CAS  PubMed  Google Scholar 

  • Kanda S, Shono T, Tomasini-Johansson B, Klint P, Saito Y (1999) Role of thrombospondin-1-derived peptide, 4N1K, in FGF-2-induced angiogenesis. Exp Cell Res 252:262–272

    Article  CAS  PubMed  Google Scholar 

  • Kang DH, Anderson S, Kim YG, Mazzalli M, Suga S, Jefferson JA, Gordon KL, Oyama TT, Hughes J, Hugo C, Kerjaschki D, Schreiner GF, Johnson RJ (2001) Impaired angiogenesis in the aging kidney: vascular endothelial growth factor and thrombospondin-1 in renal disease. Am J Kidney Dis 37:601–611

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi Y, Ota Y, Kawamoto M, Ito I, Tsuchiya N, Sugiura T, Katsumata Y, Soejima M, Sato S, Hasegawa M, Fujimoto M, Takehara K, Kuwana M, Yamanaka H, Hara M (2009) Association study of a polymorphism of the CTGF gene and susceptibility to systemic sclerosis in the Japanese population. Ann Rheum Dis 68:1921–1924

    Article  CAS  PubMed  Google Scholar 

  • Kazuno M, Tokunaga T, Oshika Y, Tanaka Y, Tsugane R, Kijima H, Yamazaki H, Ueyama Y, Nakamura M (1999) Thrombospondin-2 (TSP2) expression is inversely correlated with vascularity in glioma. Eur J Cancer 35:502–506

    Article  CAS  PubMed  Google Scholar 

  • Kehrel B, Kronenberg A, Schwippert B, Niesing-Bresch D, Niehues U, Tschope D, van de Loo J, Clemetson KJ (1991) Thrombospondin binds normally to glycoprotein IIIb deficient platelets. Biochem Biophys Res Commun 179:985–991

    Article  CAS  PubMed  Google Scholar 

  • Kipnes J, Carlberg AL, Loredo GA, Lawler J, Tuan RS, Hall DJ (2003) Effect of cartilage oligomeric matrix protein on mesenchymal chondrogenesis in vitro. Osteoarthritis Cartilage 11:442–454

    Article  CAS  PubMed  Google Scholar 

  • Kishi M, Nakamura M, Nishimine M, Ishida E, Shimada K, Kirita T, Konishi N (2003) Loss of heterozygosity on chromosome 6q correlates with decreased thrombospondin-2 expression in human salivary gland carcinomas. Cancer Sci 94:530–535

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa M, Kudo Y, Iizuka S, Ogawa I, Abiko Y, Miyauchi M, Takata T (2006) Effect of F-spondin on cementoblastic differentiation of human periodontal ligament cells. Biochem Biophys Res Commun 349:1050–1056

    Article  CAS  PubMed  Google Scholar 

  • Klar A, Baldassare M, Jessell TM (1992) F-spondin: a gene expressed at high levels in the floor plate encodes a secreted protein that promotes neural cell adhesion and neurite extension. Cell 69:95–110

    Article  CAS  PubMed  Google Scholar 

  • Kleer CG, Zhang Y, Merajver SD (2007) CCN6 (WISP3) as a new regulator of the epithelial phenotype in breast cancer. Cells Tissues Organs 185:95–99

    Article  CAS  PubMed  Google Scholar 

  • Kobel M, Kalloger SE, Boyd N, McKinney S, Mehl E, Palmer C, Leung S, Bowen NJ, Ionescu DN, Rajput A, Prentice LM, Miller D, Santos J, Swenerton K, Gilks CB, Huntsman D (2008) Ovarian carcinoma subtypes are different diseases: implications for biomarker studies. PLoS Med 5:e232

    Article  PubMed  CAS  Google Scholar 

  • Koch W, Hoppmann P, de Waha A, Schomig A, Kastrati A (2008) Polymorphisms in thrombospondin genes and myocardial infarction: a case-control study and a meta-analysis of available evidence. Hum Mol Genet 17:1120–1126

    Article  CAS  PubMed  Google Scholar 

  • Kokenyesi R, Armstrong LC, Agah A, Artal R, Bornstein P (2004) Thrombospondin 2 deficiency in pregnant mice results in premature softening of the uterine cervix. Biol Reprod 70:385–390

    Article  CAS  PubMed  Google Scholar 

  • Konigshoff M, Kramer M, Balsara N, Wilhelm J, Amarie OV, Jahn A, Rose F, Fink L, Seeger W, Schaefer L, Gunther A, Eickelberg O (2009) WNT1-inducible signaling protein-1 mediates pulmonary fibrosis in mice and is upregulated in humans with idiopathic pulmonary fibrosis. J Clin Invest 119:772–787

    PubMed  Google Scholar 

  • Koo BH, Hurskainen T, Mielke K, Aung PP, Casey G, Autio-Harmainen H, Apte SS (2007) ADAMTSL3/punctin-2, a gene frequently mutated in colorectal tumors, is widely expressed in normal and malignant epithelial cells, vascular endothelial cells and other cell types, and its mRNA is reduced in colon cancer. Int J Cancer 121:1710–1716

    Article  CAS  PubMed  Google Scholar 

  • Koon HW, Zhao D, Xu H, Bowe C, Moss A, Moyer MP, Pothoulakis C (2008) Substance P-mediated expression of the pro-angiogenic factor CCN1 modulates the course of colitis. Am J Pathol 173:400–410

    Article  CAS  PubMed  Google Scholar 

  • Kos K, Wong S, Tan B, Gummesson A, Jernas M, Franck N, Kerrigan D, Nystrom FH, Carlsson LM, Randeva HS, Pinkney JH, Wilding JP (2009) Regulation of the fibrosis and angiogenesis promoter SPARC/osteonectin in human adipose tissue by weight change, leptin, insulin, and glucose. Diabetes 58:1780–1788

    Article  CAS  PubMed  Google Scholar 

  • Kozma K, Keusch JJ, Hegemann B, Luther KB, Klein D, Hess D, Haltiwanger RS, Hofsteenge J (2006) Identification and characterization of a beta 1, 3-glucosyltransferase that synthesizes the Glc-beta 1, 3-Fuc disaccharide on thrombospondin type 1 repeats. J Biol Chem 281(48):36742–36751

    Article  CAS  PubMed  Google Scholar 

  • Krady MM, Zeng J, Yu J, MacLauchlan S, Skokos EA, Tian W, Bornstein P, Sessa WC, Kyriakides TR (2008) Thrombospondin-2 modulates extracellular matrix remodeling during physiological angiogenesis. Am J Pathol 173:879–891

    Article  CAS  PubMed  Google Scholar 

  • Kubota S, Takigawa M (2007) Role of CCN2/CTGF/Hcs24 in bone growth. Int Rev Cytol 257:1–41

    Article  CAS  PubMed  Google Scholar 

  • Kunz M, Koczan D, Ibrahim SM, Gillitzer R, Gross G, Thiesen HJ (2002) Differential expression of thrombospondin 2 in primary and metastatic malignant melanoma. Acta Derm Venereol 82:163–169

    Article  CAS  PubMed  Google Scholar 

  • Kutz WE, Gong Y, Warman ML (2005) WISP3, the gene responsible for the human skeletal disease progressive pseudorheumatoid dysplasia, is not essential for skeletal function in mice. Mol Cell Biol 25:414–421

    Article  CAS  PubMed  Google Scholar 

  • Kutz WE, Wang LW, Dagoneau N, Odrcic KJ, Cormier-Daire V, Traboulsi EI, Apte SS (2008) Functional analysis of an ADAMTS10 signal peptide mutation in Weill-Marchesani syndrome demonstrates a long-range effect on secretion of the full-length enzyme. Hum Mutat 29:1425–1434

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsova SA, Issa P, Perruccio EM, Zeng B, Sipes JM, Ward Y, Seyfried NT, Fielder HL, Day AJ, Wight TN, Roberts DD (2006) Versican-thrombospondin-1 binding in vitro and colocalization in microfibrils induced by inflammation on vascular smooth muscle cells. J Cell Sci 119:4499–4509

    Article  CAS  PubMed  Google Scholar 

  • Kvansakul M, Adams JC, Hohenester E (2004) Structure of a thrombospondin C-terminal fragment reveals a novel calcium core in the type 3 repeats. EMBO J 23:1223–1233

    Article  CAS  PubMed  Google Scholar 

  • Kyriakides TR, Zhu YH, Smith LT, Bain SD, Yang Z, Lin MT, Danielson KG, Iozzo RV, LaMarca M, McKinney CE, Ginns EI, Bornstein P (1998a) Mice that lack thrombospondin 2 display connective tissue abnormalities that are associated with disordered collagen fibrillogenesis, an increased vascular density, and a bleeding diathesis. J Cell Biol 140:419–430

    Article  CAS  PubMed  Google Scholar 

  • Kyriakides TR, Zhu YH, Yang Z, Bornstein P (1998b) The distribution of the matricellular protein thrombospondin 2 in tissues of embryonic and adult mice. J Histochem Cytochem 46:1007–1015

    CAS  PubMed  Google Scholar 

  • Kyriakides TR, Leach KJ, Hoffman AS, Ratner BD, Bornstein P (1999a) Mice that lack the angiogenesis inhibitor, thrombospondin 2, mount an altered foreign body reaction characterized by increased vascularity. Proc Natl Acad Sci USA 96:4449–4454

    Article  CAS  PubMed  Google Scholar 

  • Kyriakides TR, Tam JW, Bornstein P (1999b) Accelerated wound healing in mice with a disruption of the thrombospondin 2 gene. J Invest Dermatol 113:782–787

    Article  CAS  PubMed  Google Scholar 

  • Kyriakides TR, Rojnuckarin P, Reidy MA, Hankenson KD, Papayannopoulou T, Kaushansky K, Bornstein P (2003) Megakaryocytes require thrombospondin-2 for normal platelet formation and function. Blood 101:3915–3923

    Article  CAS  PubMed  Google Scholar 

  • Lagan AL, Pantelidis P, Renzoni EA, Fonseca C, Beirne P, Taegtmeyer AB, Denton CP, Black CM, Wells AU, du Bois RM, Welsh KI (2005) Single-nucleotide polymorphisms in the SPARC gene are not associated with susceptibility to scleroderma. Rheumatology 44:197–201

    Article  CAS  PubMed  Google Scholar 

  • Lake AC, Bialik A, Walsh K, Castellot JJ Jr (2003) CCN5 is a growth arrest-specific gene that regulates smooth muscle cell proliferation and motility. Am J Pathol 162:219–231

    Article  CAS  PubMed  Google Scholar 

  • Lamy L, Foussat A, Brown EJ, Bornstein P, Ticchioni M, Bernard A (2007) Interactions between CD47 and thrombospondin reduce inflammation. J Immunol 178:5930–5939

    CAS  PubMed  Google Scholar 

  • Lange-Asschenfeldt B, Weninger W, Velasco P, Kyriakides TR, von Andrian UH, Bornstein P, Detmar M (2002) Increased and prolonged inflammation and angiogenesis in delayed-type hypersensitivity reactions elicited in the skin of thrombospondin-2-deficient mice. Blood 99:538–545

    Article  CAS  PubMed  Google Scholar 

  • Lau LF, Lam SC (1999) The CCN family of angiogenic regulators: the integrin connection. Exp Cell Res 248:44–57

    Article  CAS  PubMed  Google Scholar 

  • Lawler J, Detmar M (2004) Tumor progression: the effects of thrombospondin-1 and -2. Int J Biochem Cell Biol 36:1038–1045

    Article  CAS  PubMed  Google Scholar 

  • Lawler J, Duquette M, Whittaker CA, Adams JC, McHenry K, DeSimone DW (1993) Identification and characterization of thrombospondin-4, a new member of the thrombospondin gene family. J Cell Biol 120:1059–1067

    Article  CAS  PubMed  Google Scholar 

  • Lawler J, McHenry K, Duquette M, Derick L (1995) Characterization of human thrombospondin-4. J Biol Chem 270:2809–2814

    Article  CAS  PubMed  Google Scholar 

  • Lawler J, Sunday M, Thibert V, Duquette M, George EL, Rayburn H, Hynes RO (1998) Thrombospondin-1 is required for normal murine pulmonary homeostasis and its absence causes pneumonia. J Clin Invest 101:982–992

    Article  CAS  PubMed  Google Scholar 

  • Le Goff C, Morice-Picard F, Dagoneau N, Wang LW, Perrot C, Crow YJ, Bauer F, Flori E, Prost-Squarcioni C, Krakow D, Ge G, Greenspan DS, Bonnet D, Le Merrer M, Munnich A, Apte SS, Cormier-Daire V (2008) ADAMTSL2 mutations in geleophysic dysplasia demonstrate a role for ADAMTS-like proteins in TGF-beta bioavailability regulation. Nat Genet 40:1119–1123

    Article  PubMed  CAS  Google Scholar 

  • Leask A, Abraham DJ (2006) All in the CCN family: essential matricellular signaling modulators emerge from the bunker. J Cell Sci 119:4803–4810

    Article  CAS  PubMed  Google Scholar 

  • Lee HY, Chung JW, Youn SW, Kim JY, Park KW, Koo BK, Oh BH, Park YB, Chaqour B, Walsh K, Kim HS (2007) Forkhead transcription factor FOXO3a is a negative regulator of angiogenic immediate early gene CYR61, leading to inhibition of vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res 100:372–380

    Article  CAS  PubMed  Google Scholar 

  • Lethias C, Descollonges Y, Boutillon MM, Garrone R (1996) Flexilin: a new extracellular matrix glycoprotein localized on collagen fibrils. Matrix Biol 15:11–19

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Ahuja N, Burger PC, Issa JP (1999) Methylation and silencing of the thrombospondin-1 promoter in human cancer. Oncogene 18:3284–3289

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Calzada MJ, Sipes JM, Cashel JA, Krutzsch HC, Annis D, Mosher DF, Roberts DD (2002) Interactions of thrombospondins with α4β1 integrin and CD47 differentially modulate T cell behavior. J Cell Biol 157:509–519

    Article  CAS  PubMed  Google Scholar 

  • Liu A, Garg P, Yang S, Gong P, Pallero MA, Annis DS, Liu Y, Passaniti A, Mann D, Mosher DF, Murphy-Ullrich JE, Goldblum SE (2009) Epidermal growth factor-like repeats of thrombospondins activate phospholipase Cgamma and increase epithelial cell migration through indirect epidermal growth factor receptor activation. J Biol Chem 284:6389–6402

    Article  CAS  PubMed  Google Scholar 

  • Mann HH, Ozbek S, Engel J, Paulsson M, Wagener R (2004) Interactions between the cartilage oligomeric matrix protein and matrilins. Implications for matrix assembly and the pathogenesis of chondrodysplasias. J Biol Chem 279:25294–25298

    Article  CAS  PubMed  Google Scholar 

  • Margosio B, Rusnati M, Bonezzi K, Cordes BL, Annis DS, Urbinati C, Giavazzi R, Presta M, Ribatti D, Mosher DF, Taraboletti G (2008) Fibroblast growth factor-2 binding to the thrombospondin-1 type III repeats, a novel antiangiogenic domain. Int J Biochem Cell Biol 40:700–709

    Article  CAS  PubMed  Google Scholar 

  • Markovic SN, Suman VJ, Rao RA, Ingle JN, Kaur JS, Erickson LA, Pitot HC, Croghan GA, McWilliams RR, Merchan J, Kottschade LA, Nevala WK, Uhl CB, Allred J, Creagan ET (2007) A phase II study of ABT-510 (thrombospondin-1 analog) for the treatment of metastatic melanoma. Am J Clin Oncol 30:303–309

    Article  CAS  PubMed  Google Scholar 

  • Martinek N, Shahab J, Saathoff M, Ringuette M (2008) Haemocyte-derived SPARC is required for collagen-IV-dependent stability of basal laminae in Drosophila embryos. J Cell Sci 121:1671–1680

    Article  CAS  PubMed  Google Scholar 

  • Martin-Manso G, Galli S, Ridnour LA, Tsokos M, Wink DA, Roberts DD (2008) Thrombospondin-1 promotes tumor macrophage recruitment and enhances tumor cell cytotoxicity by differentiated U937 cells. Cancer Res 68:7090–7099

    Article  CAS  PubMed  Google Scholar 

  • Matsumae H, Yoshida Y, Ono K, Togi K, Inoue K, Furukawa Y, Nakashima Y, Kojima Y, Nobuyoshi M, Kita T, Tanaka M (2008) CCN1 knockdown suppresses neointimal hyperplasia in a rat artery balloon injury model. Arterioscler Thromb Vasc Biol 28:1077–1083

    Article  CAS  PubMed  Google Scholar 

  • Maxhimer JB, Shih HB, Isenberg JS, Miller TW, Roberts DD (2009a) Thrombospondin-1-CD47 blockade following ischemia reperfusion injury is tissue protective. Plast Reconstr Surg 124(6):1880–1889

    Article  CAS  PubMed  Google Scholar 

  • Maxhimer JB, Soto-Pantoja DR, Ridnour LA, Shih HB, DeGraff WG, Tsokos M, Wink DA, Isenberg JS, Roberts DD (2009b) Radioprotection in normal tissue and delayed tumor growth by blockade of CD47 signaling. Sci Transl Med 1:3ra7

    PubMed  Google Scholar 

  • Midwood KS, Orend G (2009) The role of tenascin-C in tissue injury and tumorigenesis. J Cell Commun Signal 3(3–4):287–310

    Article  PubMed  Google Scholar 

  • Midwood K, Sacre S, Piccinini AM, Inglis J, Trebaul A, Chan E, Drexler S, Sofat N, Kashiwagi M, Orend G, Brennan F, Foxwell B (2009) Tenascin-C is an endogenous activator of toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nat Med 15:774–780

    Article  CAS  PubMed  Google Scholar 

  • Mo FE, Lau LF (2006) The matricellular protein CCN1 is essential for cardiac development. Circ Res 99:961–969

    Article  CAS  PubMed  Google Scholar 

  • Mo FE, Muntean AG, Chen CC, Stolz DB, Watkins SC, Lau LF (2002) CYR61 (CCN1) is essential for placental development and vascular integrity. Mol Cell Biol 22:8709–8720

    Article  CAS  PubMed  Google Scholar 

  • Mori T, Kawara S, Shinozaki M, Hayashi N, Kakinuma T, Igarashi A, Takigawa M, Nakanishi T, Takehara K (1999) Role and interaction of connective tissue growth factor with transforming growth factor-beta in persistent fibrosis: a mouse fibrosis model. J Cell Physiol 181:153–159

    Article  CAS  PubMed  Google Scholar 

  • Murphy-Ullrich JE, Mosher DF (1987) Interactions of thrombospondin with endothelial cells: receptor-mediated binding and degradation. J Cell Biol 105:1603–1611

    Article  CAS  PubMed  Google Scholar 

  • Mustonen E, Aro J, Puhakka J, Ilves M, Soini Y, Leskinen H, Ruskoaho H, Rysa J (2008) Thrombospondin-4 expression is rapidly upregulated by cardiac overload. Biochem Biophys Res Commun 373:186–191

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Weidinger G, Liang JO, Quilina-Beck A, Tamai K, Moon RT, Warman ML (2007) The CCN family member Wisp3, mutant in progressive pseudorheumatoid dysplasia, modulates BMP and Wnt signaling. J Clin Invest 117:3075–3086

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Cui Y, Fernando C, Kutz WE, Warman ML (2009) Normal growth and development in mice over-expressing the CCN family member WISP3. J Cell Commun Signal 3:105–113

    Article  PubMed  Google Scholar 

  • Nam JS, Turcotte TJ, Smith PF, Choi S, Yoon JK (2006) Mouse cristin/R-spondin family proteins are novel ligands for the Frizzled 8 and LRP6 receptors and activate beta-catenin-dependent gene expression. J Biol Chem 281:13247–13257

    Article  CAS  PubMed  Google Scholar 

  • Narouz-Ott L, Maurer P, Nitsche DP, Smyth N, Paulsson M (2000) Thrombospondin-4 binds specifically to both collagenous and non-collagenous extracellular matrix proteins via its C-terminal domains. J Biol Chem 275:37110–37117

    Article  CAS  PubMed  Google Scholar 

  • Ng TF, Turpie B, Masli S (2009) Thrombospondin-1-mediated regulation of microglia activation after retinal injury. Invest Ophthalmol Vis Sci 50:5472–5478

    Article  PubMed  Google Scholar 

  • Nie J, Sage EH (2009) SPARC functions as an inhibitor of adipogenesis. J Cell Commun Signal 3(3–4):247–254

    Article  PubMed  Google Scholar 

  • Nishimura H, Yamashita S, Zeng Z, Walz DA, Iwanaga S (1992) Evidence for the existence of O-linked sugar chains consisting of glucose and xylose in bovine thrombospondin. J Biochem 111:460–464

    CAS  PubMed  Google Scholar 

  • Norris RA, Moreno-Rodriguez R, Hoffman S, Markwald RR (2009) The many facets of the matricelluar protein periostin during cardiac development, remodeling, and pathophysiology. J Cell Commun Signal 3(3–4):275–286

    Article  PubMed  Google Scholar 

  • O’Brien TP, Lau LF (1992) Expression of the growth factor-inducible immediate early gene cyr61 correlates with chondrogenesis during mouse embryonic development. Cell Growth Differ 3:645–654

    PubMed  Google Scholar 

  • O’Rourke KM, Laherty CD, Dixit VM (1992) Thrombospondin 1 and thrombospondin 2 are expressed as both homo- and heterotrimers. J Biol Chem 267:24921–24924

    PubMed  Google Scholar 

  • Ohgawara T, Kubota S, Kawaki H, Kondo S, Eguchi T, Kurio N, Aoyama E, Sasaki A, Takigawa M (2009) Regulation of chondrocytic phenotype by micro RNA 18a: involvement of Ccn2/Ctgf as a major target gene. FEBS Lett 583:1006–1010

    Article  CAS  PubMed  Google Scholar 

  • Orend G, Chiquet-Ehrismann R (2006) Tenascin-C induced signaling in cancer. Cancer Lett 244:143–163

    Article  CAS  PubMed  Google Scholar 

  • Orsmark-Pietras C, Melen E, Vendelin J, Bruce S, Laitinen A, Laitinen LA, Lauener R, Riedler J, von Mutius E, Doekes G, Wickman M, van Hage M, Pershagen G, Scheynius A, Nyberg F, Kere J (2008) Biological and genetic interaction between tenascin C and neuropeptide S receptor 1 in allergic diseases. Hum Mol Genet 17:1673–1682

    Article  CAS  PubMed  Google Scholar 

  • Pennica D, Swanson TA, Welsh JW, Roy MA, Lawrence DA, Lee J, Brush J, Taneyhill LA, Deuel B, Lew M, Watanabe C, Cohen RL, Melhem MF, Finley GG, Quirke P, Goddard AD, Hillan KJ, Gurney AL, Botstein D, Levine AJ (1998) WISP genes are members of the connective tissue growth factor family that are up-regulated in wnt-1-transformed cells and aberrantly expressed in human colon tumors. Proc Natl Acad Sci USA 95:14717–14722

    Article  CAS  PubMed  Google Scholar 

  • Perbal B, Lazar N, Zambelli D, Lopez-Guerrero JA, Llombart-Bosch A, Scotlandi K, Picci P (2009) Prognostic relevance of CCN3 in Ewing sarcoma. Hum Pathol 40:1479–1486

    Article  CAS  PubMed  Google Scholar 

  • Perez S, Vial E, van Dam H, Castellazzi M (2001) Transcription factor ATF3 partially transforms chick embryo fibroblasts by promoting growth factor-independent proliferation. Oncogene 20:1135–1141

    Article  CAS  PubMed  Google Scholar 

  • Pihlajamaa T, Lankinen H, Ylostalo J, Valmu L, Jaalinoja J, Zaucke F, Spitznagel L, Gosling S, Puustinen A, Morgelin M, Peranen J, Maurer P, Ala-Kokko L, Kilpelainen I (2004) Characterization of recombinant amino-terminal NC4 domain of human collagen IX: interaction with glycosaminoglycans and cartilage oligomeric matrix protein. J Biol Chem 279:24265–24273

    Article  CAS  PubMed  Google Scholar 

  • Pimanda JE, Annis DS, Raftery M, Mosher DF, Chesterman CN, Hogg PJ (2002) The von Willebrand factor-reducing activity of thrombospondin-1 is located in the calcium-binding/C-terminal sequence and requires a free thiol at position 974. Blood 100:2832–2838

    Article  CAS  PubMed  Google Scholar 

  • Pimanda JE, Ganderton T, Maekawa A, Yap CL, Lawler J, Kershaw G, Chesterman CN, Hogg PJ (2004) Role of thrombospondin-1 in control of von Willebrand factor multimer size in mice. J Biol Chem 279:21439–21448

    Article  CAS  PubMed  Google Scholar 

  • Porter S, Clark IM, Kevorkian L, Edwards DR (2005) The ADAMTS metalloproteinases. Biochem J 386:15–27

    Article  CAS  PubMed  Google Scholar 

  • Posey KL, Hankenson K, Veerisetty AC, Bornstein P, Lawler J, Hecht JT (2008a) Skeletal abnormalities in mice lacking extracellular matrix proteins, thrombospondin-1, thrombospondin-3, thrombospondin-5, and type IX collagen. Am J Pathol 172:1664–1674

    Article  CAS  PubMed  Google Scholar 

  • Posey KL, Yang Y, Veerisetty AC, Sharan SK, Hecht JT (2008b) Model systems for studying skeletal dysplasias caused by TSP-5/COMP mutations. Cell Mol Life Sci 65:687–699

    Article  CAS  PubMed  Google Scholar 

  • Przysiecki CT, Staggers JE, Ramjit HG, Musson DG, Stern AM, Bennett CD, Friedman PA (1987) Occurrence of beta-hydroxylated asparagine residues in non-vitamin K-dependent proteins containing epidermal growth factor-like domains. Proc Natl Acad Sci USA 84:7856–7860

    Article  CAS  PubMed  Google Scholar 

  • Qabar AN, Lin Z, Wolf FW, O’Shea KS, Lawler J, Dixit VM (1994) Thrombospondin 3 is a developmentally regulated heparin binding protein. J Biol Chem 269:1262–1269

    CAS  PubMed  Google Scholar 

  • Raman P, Krukovets I, Marinic TE, Bornstein P, Stenina OI (2007) Glycosylation mediates up-regulation of a potent antiangiogenic and proatherogenic protein, thrombospondin-1, by glucose in vascular smooth muscle cells. J Biol Chem 282:5704–5714

    Article  CAS  PubMed  Google Scholar 

  • Rayssac A, Neveu C, Pucelle M, Van den Berghe L, Prado-Lourenco L, Arnal JF, Chaufour X, Prats AC (2009) IRES-based vector coexpressing FGF2 and Cyr61 provides synergistic and safe therapeutics of lower limb ischemia. Mol Ther 17:2010–2019

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro SM, Poczatek M, Schultz-Cherry S, Villain M, Murphy-Ullrich JE (1999) The activation sequence of thrombospondin-1 interacts with the latency- associated peptide to regulate activation of latent transforming growth factor-beta. J Biol Chem 274:13586–13593

    Article  CAS  PubMed  Google Scholar 

  • Riessen R, Kearney M, Lawler J, Isner JM (1998) Immunolocalization of thrombospondin-1 in human atherosclerotic and restenotic arteries. Am Heart J 135:357–364

    Article  CAS  PubMed  Google Scholar 

  • Riessen R, Fenchel M, Chen H, Axel DI, Karsch KR, Lawler J (2001) Cartilage oligomeric matrix protein (thrombospondin-5) is expressed by human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 21:47–54

    CAS  PubMed  Google Scholar 

  • Rojas A, Meherem S, Kim YH, Washington MK, Willis JE, Markowitz SD, Grady WM (2008) The aberrant methylation of TSP1 suppresses TGF-beta1 activation in colorectal cancer. Int J Cancer 123:14–21

    Article  CAS  PubMed  Google Scholar 

  • Rueda B, Simeon C, Hesselstrand R, Herrick A, Worthington J, Ortego-Centeno N, Riemekasten G, Fonollosa V, Vonk MC, van den Hoogen FH, Sanchez-Roman J, Guirre-Zamorano MA, Garcia-Portales R, Pros A, Camps MT, Gonzalez-Gay MA, Gonzalez-Escribano MF, Coenen MJ, Lambert N, Nelson JL, Radstake TR, Martin J (2009) A large multicentre analysis of CTGF-945 promoter polymorphism does not confirm association with systemic sclerosis susceptibility or phenotype. Ann Rheum Dis 68:1618–1620

    Article  CAS  PubMed  Google Scholar 

  • Rydziel S, Stadmeyer L, Zanotti S, Durant D, Smerdel-Ramoya A, Canalis E (2007) Nephroblastoma overexpressed (Nov) inhibits osteoblastogenesis and causes osteopenia. J Biol Chem 282:19762–19772

    Article  CAS  PubMed  Google Scholar 

  • Sadvakassova G, Dobocan MC, Congote LF (2009a) Osteopontin and the C-terminal peptide of thrombospondin-4 compete for CD44 binding and have opposite effects on CD133+ cell colony formation. BMC Res Notes 2:215

    Article  PubMed  CAS  Google Scholar 

  • Sadvakassova G, Dobocan MC, Difalco MR, Congote LF (2009b) Regulator of differentiation 1 (ROD1) binds to the amphipathic C-terminal peptide of thrombospondin-4 and is involved in its mitogenic activity. J Cell Physiol 220:672–679

    Article  CAS  PubMed  Google Scholar 

  • Sage EH, Bornstein P (1991) Extracellular proteins that modulate cell-matrix interactions. SPARC, tenascin, and thrombospondin. J Biol Chem 266:14831–14834

    CAS  PubMed  Google Scholar 

  • Said N, Frierson HF Jr, Chernauskas D, Conaway M, Motamed K, Theodorescu D (2009) The role of SPARC in the TRAMP model of prostate carcinogenesis and progression. Oncogene 28:3487–3498

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto K, Yamaguchi S, Ando R, Miyawaki A, Kabasawa Y, Takagi M, Li CL, Perbal B, Katsube K (2002) The nephroblastoma overexpressed gene (NOV/ccn3) protein associates with Notch1 extracellular domain and inhibits myoblast differentiation via notch signaling pathway. J Biol Chem 277:29399–29405

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Sato M, Kiyohara K, Sogabe M, Shikanai T, Kikuchi N, Togayachi A, Ishida H, Ito H, Kameyama A, Gotoh M, Narimatsu H (2006) Molecular cloning and characterization of a novel human {beta}1, 3-glucosyltransferase, {beta}3Glc-T, which is localized at the endoplasmic reticulum and glucosylates O-linked fucosylglycan on thrombospondin type 1 repeat domain. Glycobiology 16(12):1194–1206

    Article  CAS  PubMed  Google Scholar 

  • Scatena M, Liaw L, Giachelli CM (2007) Osteopontin: a multifunctional molecule regulating chronic inflammation and vascular disease. Arterioscler Thromb Vasc Biol 27:2302–2309

    Article  CAS  PubMed  Google Scholar 

  • Schroen B, Heymans S, Sharma U, Blankesteijn WM, Pokharel S, Cleutjens JP, Porter JG, Evelo CT, Duisters R, van Leeuwen RE, Janssen BJ, Debets JJ, Smits JF, Daemen MJ, Crijns HJ, Bornstein P, Pinto YM (2004) Thrombospondin-2 is essential for myocardial matrix integrity: increased expression identifies failure-prone cardiac hypertrophy. Circ Res 95:515–522

    Article  CAS  PubMed  Google Scholar 

  • Schubert D, Klar A, Park M, Dargusch R, Fischer WH (2006) F-spondin promotes nerve precursor differentiation. J Neurochem 96:444–453

    Article  CAS  PubMed  Google Scholar 

  • Schultz-Cherry S, Chen H, Mosher DF, Misenheimer TM, Krutzsch HC, Roberts DD, Murphy-Ullrich JE (1995) Regulation of transforming growth factor-β activation by discrete sequences of thrombospondin 1. J Biol Chem 270:7304–7310

    Article  CAS  PubMed  Google Scholar 

  • Sezaki S, Hirohata S, Iwabu A, Nakamura K, Toeda K, Miyoshi T, Yamawaki H, Demircan K, Kusachi S, Shiratori Y, Ninomiya Y (2005) Thrombospondin-1 is induced in rat myocardial infarction and its induction is accelerated by ischemia/reperfusion. Exp Biol Med 230:621–630

    CAS  Google Scholar 

  • Shi-wen X, Leask A, Abraham D (2008) Regulation and function of connective tissue growth factor/CCN2 in tissue repair, scarring and fibrosis. Cytokine Growth Factor Rev 19:133–144

    Article  PubMed  CAS  Google Scholar 

  • Simantov R, Febbraio M, Silverstein RL (2005) The antiangiogenic effect of thrombospondin-2 is mediated by CD36 and modulated by histidine-rich glycoprotein. Matrix Biol 24:27–34

    CAS  PubMed  Google Scholar 

  • Smerdel-Ramoya A, Zanotti S, Stadmeyer L, Durant D, Canalis E (2008) Skeletal overexpression of connective tissue growth factor (ctgf) impairs bone formation and causes osteopenia. Endocrinology 149:4374–4381

    Article  CAS  PubMed  Google Scholar 

  • Smith RK, Zunino L, Webbon PM, Heinegard D (1997) The distribution of cartilage oligomeric matrix protein (COMP) in tendon and its variation with tendon site, age and load. Matrix Biol 16:255–271

    Article  CAS  PubMed  Google Scholar 

  • Sodersten F, Ekman S, Schmitz M, Paulsson M, Zaucke F (2006) Thrombospondin-4 and cartilage oligomeric matrix protein form heterooligomers in equine tendon. Connect Tissue Res 47:85–91

    Article  CAS  PubMed  Google Scholar 

  • Stenina OI, Desai SY, Krukovets I, Kight K, Janigro D, Topol EJ, Plow EF (2003a) Thrombospondin-4 and its variants: expression and differential effects on endothelial cells. Circulation 108:1514–1519

    Article  CAS  PubMed  Google Scholar 

  • Stenina OI, Krukovets I, Wang K, Zhou Z, Forudi F, Penn MS, Topol EJ, Plow EF (2003b) Increased expression of thrombospondin-1 in vessel wall of diabetic Zucker rat. Circulation 107:3209–3215

    Article  CAS  PubMed  Google Scholar 

  • Stenina OI, Byzova TV, Adams JC, McCarthy JJ, Topol EJ, Plow EF (2004) Coronary artery disease and the thrombospondin single nucleotide polymorphisms. Int J Biochem Cell Biol 36:1013–1030

    Article  CAS  PubMed  Google Scholar 

  • Stenina OI, Ustinov V, Krukovets I, Marinic T, Topol EJ, Plow EF (2005) Polymorphisms A387P in thrombospondin-4 and N700S in thrombospondin-1 perturb calcium binding sites. FASEB J 19:1893–1895

    CAS  PubMed  Google Scholar 

  • Streit M, Riccardi L, Velasco P, Brown LF, Hawighorst T, Bornstein P, Detmar M (1999) Thrombospondin-2: a potent endogenous inhibitor of tumor growth and angiogenesis. Proc Natl Acad Sci USA 96:14888–14893

    Article  CAS  PubMed  Google Scholar 

  • Subramanian A, Wayburn B, Bunch T, Volk T (2007) Thrombospondin-mediated adhesion is essential for the formation of the myotendinous junction in Drosophila. Development 134:1269–1278

    Article  CAS  PubMed  Google Scholar 

  • Sullivan MM, Barker TH, Funk SE, Karchin A, Seo NS, Hook M, Sanders J, Starcher B, Wight TN, Puolakkainen P, Sage EH (2006) Matricellular hevin regulates decorin production and collagen assembly. J Biol Chem 281:27621–27632

    Article  CAS  PubMed  Google Scholar 

  • Sullivan MM, Puolakkainen PA, Barker TH, Funk SE, Sage EH (2008) Altered tissue repair in hevin-null mice: inhibition of fibroblast migration by a matricellular SPARC homolog. Wound Repair Regen 16:310–319

    Article  PubMed  Google Scholar 

  • Svensson L, Aszodi A, Heinegard D, Hunziker EB, Reinholt FP, Fassler R, Oldberg A (2002) Cartilage oligomeric matrix protein-deficient mice have normal skeletal development. Mol Cell Biol 22:4366–4371

    Article  CAS  PubMed  Google Scholar 

  • Swinnen M, Vanhoutte D, Van Almen GC, Hamdani N, Schellings MW, D’Hooge J, Van der Velden J, Weaver MS, Sage EH, Bornstein P, Verheyen FK, Van den Driessche T, Chuah MK, Westermann D, Paulus WJ, Van de Werf F, Schroen B, Carmeliet P, Pinto YM, Heymans S (2009) Absence of thrombospondin-2 causes age-related dilated cardiomyopathy. Circulation 120:1585–1597

    Article  CAS  PubMed  Google Scholar 

  • Tan K, Duquette M, Liu JH, Lawler J, Wang JH (2008) The crystal structure of the heparin-binding reelin-N domain of F-spondin. J Mol Biol 381(5):1213–1223

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Hiraiwa N, Hashimoto H, Yamazaki Y, Kusakabe M (2004) Tenascin-C regulates angiogenesis in tumor through the regulation of vascular endothelial growth factor expression. Int J Cancer 108:31–40

    Article  CAS  PubMed  Google Scholar 

  • Tandon NN, Ockenhouse CF, Greco NJ, Jamieson GA (1991) Adhesive functions of platelets lacking glycoprotein IV (CD36). Blood 78:2809–2813

    CAS  PubMed  Google Scholar 

  • Taraboletti G, Roberts D, Liotta LA, Giavazzi R (1990) Platelet thrombospondin modulates endothelial cell adhesion, motility, and growth: a potential angiogenesis regulatory factor. J Cell Biol 111:765–772

    Article  CAS  PubMed  Google Scholar 

  • Taylor DK, Meganck JA, Terkhorn S, Rajani R, Naik A, O’Keefe RJ, Goldstein SA, Hankenson KD (2009) Thrombospondin-2 influences the proportion of cartilage and bone during fracture healing. J Bone Miner Res 24(6):1043–1054

    Article  PubMed  Google Scholar 

  • Thakar CV, Zahedi K, Revelo MP, Wang Z, Burnham CE, Barone S, Bevans S, Lentsch AB, Rabb H, Soleimani M (2005) Identification of thrombospondin 1 (TSP-1) as a novel mediator of cell injury in kidney ischemia. J Clin Invest 115:3451–3459

    Article  CAS  PubMed  Google Scholar 

  • Timmons JA, Jansson E, Fischer H, Gustafsson T, Greenhaff PL, Ridden J, Rachman J, Sundberg CJ (2005) Modulation of extracellular matrix genes reflects the magnitude of physiological adaptation to aerobic exercise training in humans. BMC Biol 3:19

    Article  PubMed  CAS  Google Scholar 

  • Todorovic V, Chen CC, Hay N, Lau LF (2005) The matrix protein CCN1 (CYR61) induces apoptosis in fibroblasts. J Cell Biol 171:559–568

    Article  CAS  PubMed  Google Scholar 

  • Tolsma SS, Volpert OV, Good DJ, Frazier WA, Polverini PJ, Bouck N (1993) Peptides derived from two separate domains of the matrix protein thrombospondin-1 have anti-angiogenic activity. J Cell Biol 122:497–511

    Article  CAS  PubMed  Google Scholar 

  • Topol EJ, McCarthy J, Gabriel S, Moliterno DJ, Rogers WJ, Newby LK, Freedman M, Metivier J, Cannata R, O’Donnell CJ, Kottke-Marchant K, Murugesan G, Plow EF, Stenina O, Daley GQ (2001) Single nucleotide polymorphisms in multiple novel thrombospondin genes may be associated with familial premature myocardial infarction. Circulation 104:2641–2644

    Article  CAS  PubMed  Google Scholar 

  • Tseng S, Reddi AH, Di Cesare PE (2009) Cartilage oligomeric matrix protein (COMP): a biomarker of arthritis. Biomark Insights 4:33–44

    CAS  PubMed  Google Scholar 

  • Tucker RP (2004) The thrombospondin type 1 repeat superfamily. Int J Biochem Cell Biol 36:969–974

    Article  CAS  PubMed  Google Scholar 

  • Tucker RP, Chiquet-Ehrismann R (2009a) Evidence for the evolution of tenascin and fibronectin early in the chordate lineage. Int J Biochem Cell Biol 41:424–434

    Article  CAS  PubMed  Google Scholar 

  • Tucker RP, Chiquet-Ehrismann R (2009b) The regulation of tenascin expression by tissue microenvironments. Biochim Biophys Acta 1793:888–892

    Article  CAS  PubMed  Google Scholar 

  • Tucker RP, Adams JC, Lawler J (1995) Thrombospondin-4 is expressed by early osteogenic tissues in the chick embryo. Dev Dyn 203:477–490

    CAS  PubMed  Google Scholar 

  • Turpie B, Yoshimura T, Gulati A, Rios JD, Dartt DA, Masli S (2009) Sjogren’s syndrome-like ocular surface disease in thrombospondin-1 deficient mice. Am J Pathol 175:1136–1147

    Article  CAS  PubMed  Google Scholar 

  • Velasco P, Huegel R, Brasch J, Schroder JM, Weichenthal M, Stockfleth E, Schwarz T, Lawler J, Detmar M, Lange-Asschenfeldt B (2009) The angiogenesis inhibitor thrombospondin-1 inhibits acute cutaneous hypersensitivity reactions. J Invest Dermatol 129:2022–2030

    Article  CAS  PubMed  Google Scholar 

  • Venkatachalam K, Venkatesan B, Valente AJ, Melby PC, Nandish S, Reusch JE, Clark RA, Chandrasekar B (2009) WISP1, a pro-mitogenic, pro-survival factor, mediates tumor necrosis factor-alpha (TNF-alpha)-stimulated cardiac fibroblast proliferation but inhibits TNF-alpha-induced cardiomyocyte death. J Biol Chem 284:14414–14427

    Article  CAS  PubMed  Google Scholar 

  • Vogel T, Guo NH, Krutzsch HC, Blake DA, Hartman J, Mendelovitz S, Panet A, Roberts DD (1993) Modulation of endothelial cell proliferation, adhesion, and motility by recombinant heparin-binding domain and synthetic peptides from the type I repeats of thrombospondin. J Cell Biochem 53:74–84

    Article  CAS  PubMed  Google Scholar 

  • Volpert OV, Tolsma SS, Pellerin S, Feige JJ, Chen H, Mosher DF, Bouck N (1995) Inhibition of angiogenesis by thrombospondin-2. Biochem Biophys Res Commun 217:326–332

    Article  CAS  PubMed  Google Scholar 

  • Vos HL, Devarayalu S, de Vries Y, Bornstein P (1992) Thrombospondin 3 (Thbs3), a new member of the thrombospondin gene family. J Biol Chem 267:12192–12196

    CAS  PubMed  Google Scholar 

  • Wahab NA, Weston BS, Mason RM (2005) Connective tissue growth factor CCN2 interacts with and activates the tyrosine kinase receptor TrkA. J Am Soc Nephrol 16:340–351

    Article  CAS  PubMed  Google Scholar 

  • Wang KX, Denhardt DT (2008) Osteopontin: role in immune regulation and stress responses. Cytokine Growth Factor Rev 19:333–345

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Skorczewski J, Feng X, Mei L, Murphy-Ullrich JE (2004) Glucose up-regulates thrombospondin 1 gene transcription and transforming growth factor-beta activity through antagonism of cGMP-dependent protein kinase repression via upstream stimulatory factor 2. J Biol Chem 279:34311–34322

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhang R, Wen S, McCafferty DM, Beck PL, MacNaughton WK (2009a) Nitric oxide increases Wnt-induced secreted protein-1 (WISP-1/CCN4) expression and function in colitis. J Mol Med 87:435–445

    Article  CAS  PubMed  Google Scholar 

  • Wang XY, McLennan SV, Allen T, Tsoutsman T, Semsarian C, Twigg SM (2009b) Adverse effects of high glucose and free fatty acid on cardiomyocytes are mediated by connective tissue growth factor. Am J Physiol Cell Physiol 297:C1490–C1500

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Komuro Y, Kiyomatsu T, Kanazawa T, Kazama Y, Tanaka J, Tanaka T, Yamamoto Y, Shirane M, Muto T, Nagawa H (2006) Prediction of sensitivity of rectal cancer cells in response to preoperative radiotherapy by DNA microarray analysis of gene expression profiles. Cancer Res 66:3370–3374

    Article  CAS  PubMed  Google Scholar 

  • Whitcomb BP, Mutch DG, Herzog TJ, Rader JS, Gibb RK, Goodfellow PJ (2003) Frequent HOXA11 and THBS2 promoter methylation, and a methylator phenotype in endometrial adenocarcinoma. Clin Cancer Res 9:2277–2287

    CAS  PubMed  Google Scholar 

  • Wu S, Platteau A, Chen S, McNamara G, Whitsett J, Bancalari E (2009) Conditional over-expression of connective tissue growth factor disrupts postnatal lung development. Am J Respir Cell Mol Biol 42(5):552–563

    Article  PubMed  CAS  Google Scholar 

  • Xiao Y, Kleeff J, Guo J, Gazdhar A, Liao Q, Di Cesare PE, Buchler MW, Friess H (2004) Cartilage oligomeric matrix protein expression in hepatocellular carcinoma and the cirrhotic liver. J Gastroenterol Hepatol 19:296–302

    Article  CAS  PubMed  Google Scholar 

  • Xu K, Zhang Y, Ilalov K, Carlson CS, Feng JQ, Di Cesare PE, Liu CJ (2007) Cartilage oligomeric matrix protein associates with granulin-epithelin precursor (GEP) and potentiates GEP-stimulated chondrocyte proliferation. J Biol Chem 282:11347–11355

    Article  CAS  PubMed  Google Scholar 

  • Yamanokuchi K, Yabuki A, Yoshimoto Y, Arai K, Fujiki M, Misumi K (2009) Gene and protein expression of cartilage oligomeric matrix protein associated with oncogenesis in canine tumors. J Vet Med Sci 71:499–503

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Strickland DK, Bornstein P (2001) Extracellular matrix metalloproteinase 2 levels are regulated by the low density lipoprotein-related scavenger receptor and thrombospondin 2. J Biol Chem 276:8403–8408

    Article  CAS  PubMed  Google Scholar 

  • Yang QW, Liu S, Tian Y, Salwen HR, Chlenski A, Weinstein J, Cohn SL (2003) Methylation-associated silencing of the thrombospondin-1 gene in human neuroblastoma. Cancer Res 63:6299–6310

    CAS  PubMed  Google Scholar 

  • Yang K, Vega JL, Hadzipasic M, Schatzmann Peron JP, Zhu B, Carrier Y, Masli S, Rizzo LV, Weiner HL (2009) Deficiency of thrombospondin-1 reduces Th17 differentiation and attenuates experimental autoimmune encephalomyelitis. J Autoimmun 32:94–103

    Article  CAS  PubMed  Google Scholar 

  • Young GD, Murphy-Ullrich JE (2004) The tryptophan-rich motifs of the thrombospondin type 1 repeats bind VLAL motifs in the latent transforming growth factor-beta complex. J Biol Chem 279:47633–47642

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y, Nymoen DA, Stavnes HT, Rosnes AK, Bjorang O, Wu C, Nesland JM, Davidson B (2009) Tenascin-X is a novel diagnostic marker of malignant mesothelioma. Am J Surg Pathol 33:1673–1682

    Article  PubMed  Google Scholar 

  • Zaia J, Boynton RE, McIntosh A, Marshak DR, Olsson H, Heinegard D, Barry FP (1997) Post-translational modifications in cartilage oligomeric matrix protein. Characterization of the N-linked oligosaccharides by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. J Biol Chem 272:14120–14126

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Wu J, Cao Q, Xiao L, Wang L, He D, Ouyang G, Lin J, Shen B, Shi Y, Zhang Y, Li D, Li N (2009) A critical role of Cyr61 in interleukin-17-dependent proliferation of fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Rheum 60:3602–3612

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Cornelius CP, Eichner M, Bornemann A (2006) Reinnervation-induced alterations in rat skeletal muscle. Neurobiol Dis 23:595–602

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

DDR was supported by the Intramural Research Program of the NIH, NCI, Center for Cancer Research. LFL was supported by grants from the National Institutes of Health (CA46565, GM78492, and HL81390).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David D. Roberts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Roberts, D.D., Lau, L.F. (2011). Matricellular Proteins. In: Mecham, R. (eds) The Extracellular Matrix: an Overview. Biology of Extracellular Matrix. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16555-9_11

Download citation

Publish with us

Policies and ethics