Skip to main content

Satellite Air – Sea Fluxes

  • Chapter
  • First Online:

Abstract

This chapter addresses the estimation of global surface winds, surface wind stress, latent heat flux, and sensible heat flux over the oceans with high spatial and temporal resolution using satellite radar and radiometer measurements. An overview of the physics of remotely sensed data, of methods and algorithms used to retrieve surface fluxes is provided. The retrievals are used to estimate regular in space and time surface parameters, requested for oceanic forcing function, over global ocean. The characteristics of the former are investigated at global and regional scales.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ataktürk SS, Katsaros KB (1998) Estimates of surface humidity and wind speed obtained from satellite data in the stratocumulus regime in the Azores region. In: Brown RA (ed) Remote sensing of the pacific ocean by satellites. Southwood Press, Marrickville NSW, Australia, 16–22.

    Google Scholar 

  • Bentamy A, Quilfen Y, Gohin F, Grima N, Lenaour M, Servain J (1996) Determination and validation of average field from ERS-1 scatterometer measurements. Global Atmos Ocean Sys 4:1–29.

    Google Scholar 

  • Bentamy A, Queffeulou P, Quilfen Y, Katsaros K (1999) Ocean surface wind fields estimated from satellite active and passive microwave instruments, IEEE Trans Geos Remote Sens 37(5):2469–2486.

    Article  Google Scholar 

  • Bentamy A, Quilfen Y, Flament P (2002) Scatteromter wind fields: a new release over the decade 1991–2001. CJRS 28(3):424–430.

    Google Scholar 

  • Caruso M, Dickinson S, Kelly K, Spillane M, Mangum L, McPhaden M, Stratton L (1999) Evaluation of NSCAT scatterometer winds using Equatorial Pacific buoy observations. Technical Report, Applied Physics Laboratory, University of Washington, Seattle, WA, USA, 60pp.

    Google Scholar 

  • ECMWF (1993) http://www.ecmwf.int/products/data/operational_system/evolution/evolution_1993.html

  • Freilich MH, Dunbar S (1999) The accuracy of the NSCAT 1 vector winds: comparisons with National Data Buoy Center buoys. J Geophys Res 104:11231–11246.

    Article  Google Scholar 

  • Goodberlet MA, Swift CT, Wilkerson JC (1989) Remote sensing of ocean surface winds with the Special Sensor Microwave/Imager. J Geophys Res 94:14547–14555.

    Article  Google Scholar 

  • Graber HC, Ebutchi N, Vakkayil R (1996) Evaluation of ERS-1 scatterometer winds with wind and wave ocean buoy observations. Tech. Report, RSMAS 96-003, Division of Applied Marine Physics, RSMAS, University of Miami, FL, USA, 58 pp.

    Google Scholar 

  • Hosking JRM (1990) L-moments: analysis and estimation od distributions using linear combinations of order statistics. J R Statist Soc. Ser B 52:105–124.

    Google Scholar 

  • Jones WL, Wentz FJ, Schroeder L (1978) Algorithm for inferring wind stress from Seasat-A. J Spacecr Rockets 15:368–374.

    Article  Google Scholar 

  • JPL (2001) QuikScat science data product users manual (version 2.0). Jet Propulsion Laboratory Publication, Pasadena, CA, 84pp (Available online at http://podaac.jpl.nasa.gov/quikscat)

  • Katsaros KB, Mestas-Nuñez AM, Bentamy A, Forde EB (2003) Wind bursts and enhanced evaporation in th tropical and subtropical Atlantic Ocean. In: Goni G, Malanotte-Rizzoli P (eds) Interhemispheric water exchange in the atlantic ocean. Elsevier Oceanographic Series, 463–474.

    Google Scholar 

  • Liu WT, Katsaros K, Businger JA (1979) Bulk parametrization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface. J Atmos Sci 36:1722–1735.

    Article  Google Scholar 

  • Liu WT (1986) Statistical relation between monthly precipitable water and surface-level humidity over global oceans. Mon Wea Rev 114:1591–1602.

    Article  Google Scholar 

  • Miller DK, Katsaros K (1992) Satellite derived surface latent heat fluxes in rapidly intensifying mariner cyclone. Mon Wea Rev 120:1093–1107.

    Article  Google Scholar 

  • Queffeulou P (2003) Cross-validation of ENVISAT RA-2 significant wave height, sigma0, and wind speed. IFREMER Final report, May.

    Google Scholar 

  • Queffeulou P, Bentamy A, Guyader J (2004) Satellite wave height validation over the Mediterranean Sea, Proceedings of the ENVISAT & ERS symposium, Salzburg, Austria, 6–10 September 2004.

    Google Scholar 

  • Queffeulou P (2004) Long-term validation of wave height measurements from altimeters. Mar Geodes 27:495–510.

    Article  Google Scholar 

  • Queffeulou P, Croizé-Fillon D (2010) Global altimeter SWH data set, version 7, May, http://ftp://ftp.ifremer.fr/ifremer/cersat/products/swath/altimeters/waves/

  • Quilfen Y (1995) ERS-1 off-line wind scatterometer products. IFREMER Tech Rep 75 pp.

    Google Scholar 

  • Quilfen Y, Chapron B, Vandemark D (2001) The ERS Scatterometer Wind Measurement Accuracy: Evidence of Seasonal and Regional Biases. J Atmos Ocean Technol 18(10):1684–1697.

    Article  Google Scholar 

  • Schlüssel P, Schanz L, English G (1995). Retrieval of latent heat flux and long wave irradiance at the sea surface from SSM/I and AVHRR measurements. Adv Space Res 16:107–115.

    Article  Google Scholar 

  • Schulz J, Schlüssel P, Grassl H (1993) Water vapor in the atmospheric boundary layer over oceans from SSM/I measurements. Int J Remote Sens 14:2773–2789.

    Article  Google Scholar 

  • Schulz J, Meywerk J, Ewald S, Schlüssel P (1997) Evaluation of satellite-derived latent heat fluxes. J Clim 10:2782–2795.

    Article  Google Scholar 

  • Sobieski P, Craeye C, Bliven L (1999) Scatterometric signatures of multivariate drop impacts on fresh and salt water surfaces. Int J Remote Sens 20(11):2149–2166. July 1999.

    Article  Google Scholar 

  • Stoffelen A, Anderson D (1997) Scatterometer data interpretation: Estimation and validation of the transfer function CMOD4. J Geophys Res 102:5767–5780.

    Article  Google Scholar 

  • Thiria S, Mejia C, Badran F, Crepon M (1993) A neural network approach for modeling nonlinear transfer functions: Application for wind retrieval from spaceborne scatterometer data. J Geophys Res 98:22827–22841.

    Article  Google Scholar 

  • Yamartino RJ (1984) A comparison of several “single-pass” estimators of the standard deviation of wind direction. J Clim Appl Met 23:1362–1366.

    Google Scholar 

  • Zieger S, Vinoth J, Young IR (2009) Joint calibration of multiplatform altimeter measurements of wind speed and wave height over the past 20 years. J Atmos Ocean Technol 26(12).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrahim Bentamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bentamy, A., Katsaros, K.B., Queffeulou, P. (2011). Satellite Air – Sea Fluxes. In: Tang, D. (eds) Remote Sensing of the Changing Oceans. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16541-2_8

Download citation

Publish with us

Policies and ethics