Skip to main content

A Cellular Automata Based Crowd Behavior Model

  • Conference paper
Artificial Intelligence and Computational Intelligence (AICI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6320))

Abstract

This paper presents a Cellular Automata (CA) based crowd behavior model which mimics movements of humans in an indoor environment. Because of the increasing population in modern cities, the understanding of crowd behavior in the urban environment has become a crucial issue in emergency management. In the proposed crowd behavior model, pedestrians are confined to move in a cellular space where their movements are determined by their own status and the surrounding environment characteristics. A pedestrian’s behavior is constructed from several attributes: including the “walking toward goal” behavior, “collision and congestion avoidance” behavior, “grouping” behavior and path smoothness. Simulations have been carried out with a crowd consisting of thirty pedestrians in an indoor environment to validate the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fang, G., Kwok, N.M., Ha, Q.P.: Swarm interaction-based simulation of occupant evacuation. In: Proceedings of the Pacific-Asia Workshop on Computational Intelligence and Industrial Application (PACIIA 2008), December 19-20, vol. 2, pp. 329–333 (2008)

    Google Scholar 

  2. Was, J.: Cellular automata model of pedestrian dynamics for normal and evacuation conditions. In: Proceedings of the 5th International Conference on Intelligent Systems Design and Applications (ISDA 2005), September 8-10, pp. 154–159 (2005)

    Google Scholar 

  3. Jiang, L., Chen, J., Zhan, W.: A crowd evacuation simulation model based on 2.5-dimension cellular automaton. In: Proceedings of the IEEE International Conference on Virtual Environments, Human-Computer Interfaces and Measurements Systems (VECIMS 2009), May 11-13, pp. 90–95 (2009)

    Google Scholar 

  4. Sarmady, S., Haron, F., Talib, A.: Modeling groups of pedestrians in least effort crowd movements using cellular automata. In: Proceedings of the Third Asia International Conference on Modelling and Simulation (AMS 2009), May 25-29, pp. 520–525 (2009)

    Google Scholar 

  5. Kirchner, A., Schadschneider, A.: Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Physica A 312(1-2), 260–276 (2002)

    Article  MATH  Google Scholar 

  6. Hughes, R.L.: A continuum theory for the flow of pedestrians. Transportation Research Part B: Methodological 36(6), 507–535 (2002)

    Article  Google Scholar 

  7. Hughes, R.L.: The flow of human crowds. Annual Review of Fluid Mechanics 35(35), 169–182

    Google Scholar 

  8. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research 5, 90–98 (1986)

    Article  Google Scholar 

  9. Wang, D., Liu, D., Dissanayake, G.: A variable speed force field method for multi-robot collaboration. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2006), Beijing, China, pp. 2697–2702 (2006)

    Google Scholar 

  10. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Physical Review E 51, 4282–4286 (1995)

    Article  Google Scholar 

  11. Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using social force model. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009), June 20-25, pp. 935–942 (2009)

    Google Scholar 

  12. Lin, Y., Chen, Y.: Crowd control with swarm intelligence. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2007), September 25-28, pp. 3321–3328 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, D., Kwok, N.M., Jia, X., Li, F. (2010). A Cellular Automata Based Crowd Behavior Model. In: Wang, F.L., Deng, H., Gao, Y., Lei, J. (eds) Artificial Intelligence and Computational Intelligence. AICI 2010. Lecture Notes in Computer Science(), vol 6320. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16527-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16527-6_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16526-9

  • Online ISBN: 978-3-642-16527-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics