Skip to main content

Biologically Inspired Surface Physics: The HP Protein Model

  • Chapter
  • First Online:
Nanophenomena at Surfaces

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 47))

Abstract

The nature of proteins in contact with surfaces is a topic of great practical importance as well as of intellectual interest. We describe the use of a minimalistic model, the HP model of protein folding, to examine the general characteristics of proteins. We also review attempts to understand how the presence of a surface will modify their behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Referemces

  1. J.D. Bryngelson, J.N. Onuchic, N.D. Socci, P.G. Wolynes, Funnels, pathways and the energy landscape of protein folding: a synthesis. Prot. Struct. Funct. Genet. 21, 167 (1995)

    Article  CAS  Google Scholar 

  2. J.N. Onuchic, Z. Luthey-Schulten, P.G. Wolynes, Theory of protein folding: the energy landscape perspective. Ann. Rev. Phys. Chem. 48, 545 (1997)

    Article  CAS  Google Scholar 

  3. C.B. Anfinsen, Principles that govern the folding of protein chains. Science 181, 223 (1973)

    Article  CAS  Google Scholar 

  4. G. MacBeath, S.L. Schreiber, Printing proteins as microarrays for high-throughput function determination. Science 289, 1760 (2000)

    CAS  Google Scholar 

  5. R. Fernandez-Lafuente et al., Immobilization of lipases by selective adsorption on hydrophobic supports. Chem. Phys. Lipids 93, 185 (1998)

    Article  CAS  Google Scholar 

  6. R.S. Kane, A.D. Stroock, Nanobiotechnology: protein-nanomaterial interactions. Biotechnol. Prog. 23, 316 (2007)

    Article  CAS  Google Scholar 

  7. S.S. Davis, L. Illum, Polymeric microspheres as drug carriers. Biomaterials 9, 111 (1988)

    Article  CAS  Google Scholar 

  8. B. Berger, T. Leighton, Protein folding in the hydrophobic-hydrophilic (HP) model is NP-complete. J. Comp. Biol. 5, 27 (1998)

    Article  CAS  Google Scholar 

  9. P. Crescenzi et al., On the complexity of protein folding. J. Comp. Biol. 5, 409 (1998)

    Article  Google Scholar 

  10. C. Branden, J. Tooze, Introduction to Protein Structure (Garland, New York, NY, 1991)

    Google Scholar 

  11. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, J.D. Watson, Molecular Biology of the Cell, 3rd edn. (Garland, New York, NY, 1994), pp. 90–93

    Google Scholar 

  12. W. Kauzmann, Some factors in the interpretation of protein denaturation. Adv. Protein Chem. 14, 1 (1959)

    Article  CAS  Google Scholar 

  13. K.A. Dill, The meaning of hydrophobicity. Science 250, 297 (1990)

    Article  CAS  Google Scholar 

  14. K.A. Dill, Theory for the folding and stability of globular proteins, Biochemistry 24, 1501 (1985); K.F. Lau, K.A. Dill, A lattice statistical mechanics model of the conformational and sequence spaces of protein. Macromolecules 22, 3986 (1989)

    Article  CAS  Google Scholar 

  15. R. Unger, J. Moult, Genetic algorithms for protein folding simulations, J. Mol. Biol. 231, 75 (1993); J.T. Pedersen, J. Moult, Genetic algorithms for protein structure prediction. Curr. Opin. Struct. Biol. 6, 227 (1996)

    Article  CAS  Google Scholar 

  16. R. König, T. Dandekar, Improving genetic algorithms for protein folding simulations by systematic crossover. Biosystems 50, 17 (1999)

    Article  Google Scholar 

  17. R. Ramakrishnan, B. Ramachandran, J.F. Pekny, A dynamic Monte Carlo algorithm for exploration of dense conformational spaces in heteropolymers. J. Chem. Phys. 106, 2418 (1997)

    Article  CAS  Google Scholar 

  18. K. Yue, K.A. Dill, Forces of tertiary structural organization in globular proteins. Proc. Natl. Acad. Sci. USA 92, 146 (1995)

    Article  CAS  Google Scholar 

  19. K. Yue, K.M. Fiebig, P.D. Thomas, H.S. Chan, E.I. Shakhnovich, K.A. Dill, A test of lattice protein folding algorithms, Proc. Natl. Acad. Sci. USA 92, 325 (1995)

    Article  CAS  Google Scholar 

  20. T.C. Beutler, K.A. Dill, A fast conformational search strategy for finding low energy structures of model proteins. Protein Sci. 5, 2037 (1996)

    Article  CAS  Google Scholar 

  21. E.E. Lattman, K.M. Fiebig, K.A. Dill, Modeling compact denatured states of proteins. Biochemistry 33, 6158 (1994)

    Article  CAS  Google Scholar 

  22. K.A. Dill et al., Principles of protein folding – A perspective from simple exact models, Protein Sci. 4, 561 (1995); K.A. Dill, Polymer principles and protein folding. Protein Sci. 8, 1166 (1999)

    Article  CAS  Google Scholar 

  23. A. Sali, E. Shakhnovich, M. Karplus, How does a protein fold?, Nature 369, 248 (1994); Kinetics of protein folding. A lattice model study of the requirements for folding to the native state. J. Mol. Biol. 235, 1614 (1994)

    Article  CAS  Google Scholar 

  24. U.H.E. Hansmann, Y. Okamoto, New Monte Carlo algorithms for protein folding. Curr. Opin. Struct. Biol. 9, 177 (1999)

    Article  CAS  Google Scholar 

  25. N. Metropolis et al., Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087(1953)

    Article  CAS  Google Scholar 

  26. G.H. Paine, H.A. Scheraga, Prediction of the native conformation of a polypeptide by a statistical mechanical procedure. I. Backbone structure of enkephalin. Biopolymers 24, 1391 (1985)

    Article  CAS  Google Scholar 

  27. Z.Q. Li, H.A. Scheraga, Monte-Carlo-minimization approach to the multiple-minima problem in protein folding. Proc. Natl. Acad. Sci. USA 84, 6611 (1987)

    Article  CAS  Google Scholar 

  28. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing. Science 220, 671 (1983)

    Article  CAS  Google Scholar 

  29. P. Grassberger, Pruned-enriched Rosenbluth method: Simulations of ϑ polymers of chain length up to 1 000 000. Phys. Rev. E 56, 3682 (1997)

    Article  CAS  Google Scholar 

  30. H. Frauenkron et al., New Monte Carlo algorithm for protein folding. Phys. Rev. Lett. 80, 3149 (1998); U. Bastolla et al., Testing a new Monte Carlo algorithm for protein folding. Proteins 32, 52 (1998)

    Article  CAS  Google Scholar 

  31. H.-P. Hsu et al., Growth algorithms for lattice heteropolymers at low temperatures. J. Chem. Phys. 118, 444 (2003); H.-P. Hsu et al., Growth-based optimization algorithm for lattice heteropolymers. Phys. Rev. E 68, 021113 (2003)

    Article  CAS  Google Scholar 

  32. N. Lesh, M. Mitzenmacher, S. Whitesides, A complete and effective move set for simplified protein folding. Proceedings of the 7th annual int’l conference on research in computational molecular biology (RECOMB) (2003), p. 188

    Google Scholar 

  33. F. Liang, W.H. Wong, Evolutionary Monte Carlo for protein folding simulations. J. Chem. Phys. 115, 3374 (2001)

    Article  CAS  Google Scholar 

  34. J. Zhang, S.C. Kou, J.S. Liu, Biopolymer structure simulation and optimization via fragment regrowth Monte Carlo. J. Chem. Phys. 126, 225101 (2007)

    Article  Google Scholar 

  35. X. Zhao, Advances on protein folding simulations based on the lattice HP models with natural computing. Applied Soft Computing 8, 1029 (2008)

    Article  Google Scholar 

  36. K. Yue, K.A. Dill, Sequence-structure relationships in proteins and copolymers. Phys. Rev. E 48, 2267 (1993)

    Article  CAS  Google Scholar 

  37. R. Backofen, S. Will, A constraint-based approach to fast and exact structure prediction in three dimensional protein models. Constraints 11, 5 (2006)

    Article  Google Scholar 

  38. Y. Iba, G. Chikenji, M. Kikuchi, Simulation of lattice polymers with multi-self-overlap ensemble. J. Phys. Soc. Jpn. 67, 3327 (1998); Multi-self-overlap ensemble for protein folding: ground state search and thermodynamics. Phys. Rev. Lett. 83, 1886 (1999)

    Article  Google Scholar 

  39. M. Bachmann, W. Janke, Multicanonical chain-growth algorithm. Phys. Rev. Lett. 91, 208105 (2003); Thermodynamics of lattice heteropolymers. J. Chem. Phys. 120, 6779 (2004)

    Article  Google Scholar 

  40. T. Prellberg, J. Krawczyk, Flat histogram version of the pruned and enriched Rosenbluth method. Phys. Rev. Lett. 92, 120602(2004); T. Prellberg, J. Krawczyk, A. Rechnitzer, Polymer simulations with a flat histogram stochastic growth algorithm. In Computer Simulation Studies in Condensed-Matter Physics XVII, ed. by D.P. Landau, S.P. Lewis, H.-B. Schüttler. Proceedings of the 17th Workshop on Recent Developments in Computer Simulation Studies in Condensed Matter Physics (Springer, Berlin Heidelberg New York, NY, 2006), pp. 122–135; cond-mat/0402549

    Article  Google Scholar 

  41. S.C. Kou, J.Oh, W.H. Wong, A study of density of states and ground states in hydrophobic-hydrophilic protein folding models by equi-energy sampling. J. Chem. Phys. 124, 244903 (2006)

    Article  CAS  Google Scholar 

  42. F. Wang, D.P. Landau, Efficient, multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett. 86, 2050 (2001); Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram. Phys. Rev. E 64, 056101 (2001); Determining the density of states for classical statistical models by a flat-histogram random walk. Comput. Phys. Commun. 147, 674 (2002)

    Article  CAS  Google Scholar 

  43. T. Wüst, D.P. Landau, The HP model of protein folding: a challenging testing ground for Wang-Landau sampling. Comput. Phys. Commun. 179, 124 (2008)

    Article  Google Scholar 

  44. T. Wüst, D.P. Landau, Versatile approach to access the low temperature thermodynamics of lattice polymers and proteins. Phys. Rev. Lett. 102, 178101 (2009)

    Article  Google Scholar 

  45. D.P. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, 2nd edn. (Cambridge University Press, Cambridge, MA, 2005)

    Book  Google Scholar 

  46. J.M. Deutsch, Long range moves for high density polymer simulations. J. Chem. Phys. 106, 8849 (1997)

    Article  CAS  Google Scholar 

  47. C. Gervais, T. Wüst, D.P. Landau, Y. Xu, Application of the Wang-Landau algorithm to the dimerization of glycophorin A. J. Chem. Phys. 130, 215106 (2009)

    Article  Google Scholar 

  48. B. Berg, T. Neuhaus, Multicanonical algorithms for first order phase transitions. Phys. Lett. B 267, 249 (1991); Multicanonical ensemble: a new approach to simulate first-order phase transitions, Phys. Rev. Lett. 68, 9 (1992)

    Article  Google Scholar 

  49. A.D. Sokal in Monte Carlo and Molecular Dynamics Simulations in Polymer Science, ed. by K. Binder (Oxford University Press, Oxford, 1995), p. 47

    Google Scholar 

  50. R. Fraser, J.I. Glasgow, A demonstration of clustering in protein contact maps for Alpha Helix Pairs. In ICANNGA, vol. 1, (2007), p. 758

    Google Scholar 

  51. M. Sarikaya, C. Tamerler, A.K.Y. Jen, K. Schulten, F. Baneyx, Molecular biomimetics: nanotechnology through biology. Nature Materials 2, 577 (2003)

    Article  CAS  Google Scholar 

  52. W. Humphrey, A. Dalke, K. Schulten, VMD – visual molecular dynamics. J. Mol. Graphics 14, 33 (1996)

    Article  CAS  Google Scholar 

  53. M. Bachmann, W. Janke, Substrate adhesion of a nongrafted flexible polymer in a cavity. Phys. Rev. E 73, 020901(R) (2006); Minimalistic hybrid models for the adsorption of polymers and peptides to solid substrates. Phys. Particles Nuclei Lett. 5, 243 (2008)

    Article  Google Scholar 

  54. R.B. Pandey et al., Adsorption of peptides (A3, Flg, Pd2, Pd4) on gold and palladium surfaces by a coarse-grained Monte Carlo simulation. Phys. Chem. Chem. Phys. 11, 1989 (2009)

    Article  CAS  Google Scholar 

  55. A.D. Swetnam, M.P. Allen, Improved simulations of lattice peptide adsorption. Phys. Chem. Chem. Phys. 11, 2046 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by NSF Grant DMR-0810223 and NIH Grant 1R01GM075331.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y.W. Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, Y., Wüst, T., Landau, D. (2011). Biologically Inspired Surface Physics: The HP Protein Model. In: Michailov, M. (eds) Nanophenomena at Surfaces. Springer Series in Surface Sciences, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16510-8_7

Download citation

Publish with us

Policies and ethics