Skip to main content

Transcription of Satellite DNAs in Insects

  • Chapter
  • First Online:

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 51))

Abstract

The very complex life cycle and extreme diversity of insect life forms require a carefully regulated network of biological processes to switch on and off the right genes at the right time. Chromatin condensation is an important regulatory mechanism of gene silencing as well as gene activation for the hundreds of functional protein genes harbored in heterochromatic regions of different insect species. Being the major heterochromatin constituents, satellite DNAs (satDNAs) serve important roles in heterochromatin regulation in insects in general. Their expression occurs in all developmental stages, being the highest during embryogenesis. satDNA transcripts range from small RNAs, corresponding in size to siRNAs, and piwiRNAs, to large, a few kb long RNAs. The long transcripts are preferentially nonpolyadenylated and remain in the nucleus. The actively regulated expression of satDNAs by cis or trans elements as well as by environmental stress, rather than constitutive transcription, speaks in favor of their involvement in differentiation, development, and environmental response.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amaral PP, Mattick JS (2008) Noncoding RNA in development. Mamm Genome 19:454–492

    Article  PubMed  CAS  Google Scholar 

  • Aravin AA, Lagos-Quintana M, Yalcin A, Zavolan M, Marks D, Snyder B et al (2003) The small RNA profile during Drosophila melanogaster development. Dev Cell 5:337–350

    Article  PubMed  CAS  Google Scholar 

  • Arnason U, Höglund M, Widegren B (1984) Conservation of highly repetitive DNA in cetaceans. Chromosoma 89:238–242

    Article  PubMed  CAS  Google Scholar 

  • Bonaccorsi S, Gatti M, Pisano C, Lohe A (1990) Transcription of a satellite DNA on two Y chromosome loops of Drosophila melanogaster. Chromosoma 99(4):260–266

    Article  PubMed  CAS  Google Scholar 

  • Borstnik B, Pumpernik D, Lukman D, Ugarković Đ, Plohl M (1994) Tandemly repeated pentanucleotides in DNA sequences of eukaryotes. Nucleic Acids Res 22(16):3412–3417

    Article  PubMed  CAS  Google Scholar 

  • Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ (2007) Discrete small RNA generating loci as master regulators of transposon activity in Drosophila. Cell 128:1089–1103

    Article  PubMed  CAS  Google Scholar 

  • Bruvo-Mađarić B, Plohl M, Ugarković Đ (2007) Wide distribution of related satellite DNA families within the genus Pimelia (Tenebrionidae). Genetica 130:35–42

    Article  PubMed  Google Scholar 

  • Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–220

    Article  PubMed  CAS  Google Scholar 

  • Coats SR, Zhang Y, Epstein LM (1994) Transcription of satellite 2 DNA from the newt is driven by a snRNA type of promoter. Nucleic Acids Res 22:4697–4704

    Article  PubMed  CAS  Google Scholar 

  • Croisetiere S, Bernatchez L, Belhumeur P (2010) Temperature and length-dependent modulation of the MH class IIβ gene expression in brook charr (Salvelinus fontinalis) by a cis-acting minisatellite. Mol Immun 47:1817–1829

    Article  CAS  Google Scholar 

  • Davis CA, Wyatt GR (1989) Distribution and sequence homogeneity of an abundant satellite DNA in the beetle, Tenebrio molitor. Nucleic Acids Res 17(14):5579–5586

    Article  PubMed  CAS  Google Scholar 

  • De la Herrán R, Fontana F, Lanfredi M, Congiu L, Leis M, Rossi R, Ruiz Rejón C, Ruiz Rejón M, Garrido-Ramos MA (2001) Slow rates of evolution and sequence homogenization in an ancient satellite DNA family of sturgeons. Mol Biol Evol 18:432–436

    Article  Google Scholar 

  • Diaz MO, Barsacchi-Pilone G, Mahon KA, Gall JG (1981) Transcripts from both DNA strands of a satellite DNA occur on lampbrush chromosome loops of the newt Notophthalmus. Cell 24:649–659

    Article  PubMed  CAS  Google Scholar 

  • Dimitri P, Caizzi R, Giordano E, Carmela Accardo M, Lattanzi G, Biamonti G (2009) Constitutive heterochromatin: a surprising variety of expressed sequences. Chromosoma 118:419–435

    Article  PubMed  CAS  Google Scholar 

  • Djupedal I, Kos-Braun IC, Mosher RA, Söderholm N, Simmer F, Hardcastle TJ, Fender A, Heidrich N, Kagansky A, Bayne E, Wagner EG, Baulcombe DC, Allshire RC, Ekwall K (2009) Analysis of small RNA in fission yeast; centromeric siRNAs are potentially generated through a structured RNA. EMBO J 28(24):3832–3844

    Article  PubMed  CAS  Google Scholar 

  • Dover G (2002) Molecular drive. Trends Genet 18:587–589

    Article  PubMed  Google Scholar 

  • Durajlija Žinić S, Ugarković Đ, Cornudella L, Plohl M (2000) A novel interspersed type of organization of satellite DNAs in Tribolium madens heterochromatin. Chromosome Res 8:201–212

    Article  Google Scholar 

  • Ebert A, Lein S, Schotta G, Reuter G (2006) Histone modification and the control of heterochromatin gene silencing in Drosophila. Chromosome Res 14:377–392

    Article  PubMed  CAS  Google Scholar 

  • Epstein LM, Mahon KA, Gall JG (1986) Transcription of a satellite DNA in the newt. J Cell Biol 103:1137–1144

    Article  PubMed  CAS  Google Scholar 

  • Epstein LM, Gall JG (1987) Self-cleaving transcripts of a satellite DNA in a newt. Cell 48:535–543

    Article  PubMed  CAS  Google Scholar 

  • Fagegaltier D, Bougé AL, Berry B, Poisot E, Sismeiro O, Coppée JY, Théodore L, Voinnet O, Antoniewski C (2009) The endogenous siRNA pathway is involved in heterochromatin formation in Drosophila. Proc Natl Acad Sci USA 106:21258–21263

    Article  PubMed  CAS  Google Scholar 

  • Ferbeyre G, Smith JM, Cedergren R (1998) Schistosome satellite DNA encodes active hammerhead-ribozymes. Mol Cell Biol 18:3880–3888

    PubMed  CAS  Google Scholar 

  • Ferree PM, Barbash DA (2009) Species-specific heterochromatin prevents mitotic chromosome segregation to cause hybrid lethality in Drosophila. PLoS Biol 7:e1000234

    Article  PubMed  Google Scholar 

  • Fitzgerald DJ, Dryden GL, Bronson EC, Williams JS, Anderson JN (1994) Conserved pattern of bending in satellite and nucleosome positioning DNA. J Biol Chem 269:21303–21314

    PubMed  CAS  Google Scholar 

  • Fry K, Salser W (1977) Nucleotide sequences of HS-α satellite DNA from kangaroo rat Dipodomys ordii and characterisation of similar sequences in other rodents. Cell 12:1069–1084

    Article  PubMed  CAS  Google Scholar 

  • Gaubatz JW, Cutler RG (1990) Mouse satellite DNA is transcribed in senescent cardiac muscle. J Biol Chem 265:17753–17758

    PubMed  CAS  Google Scholar 

  • Green B, Pabon-Pena LM, Graham TA, Peach SE, Coats SR, Epstein LM (1993) Conserved sequence and functional domains in satellite 2 from three families of salamanders. Mol Biol Evol 10:732–750

    PubMed  CAS  Google Scholar 

  • Hamilton A, Voinnet O, Chappell L, Baulcombe D (2002) Two classes of short interfering RNA in RNA silencing. EMBO J 21:4671

    Article  PubMed  CAS  Google Scholar 

  • Kipling D, Warburton PE (1997) Centromeres, CENP-B and Tigger too. Trends Genet 13:141–145

    Article  PubMed  CAS  Google Scholar 

  • Klattenhoff C, Xi H, Li C, Lee S, Xu J, Khurana JS, Zhang F, Schultz N, Koppetsch BS, Nowosielska A, Seitz H, Zamore PD, Weng Z, Theurkauf WE (2009) The Drosophila HP1 homolog Rhino is required for transposon silencing and piRNA production by dual-strand clusters. Cell 138(6):1137–1149

    Article  PubMed  CAS  Google Scholar 

  • Li YX, Kirby ML (2003) Coordinated and conserved expression of alphoid repeat and alphoid repeat-tagged coding sequences. Dev Dyn 228:72–81

    Article  PubMed  CAS  Google Scholar 

  • Lohe A, Roberts P (1988) Evolution of satellite DNA sequences in Drosophila. In: Verma RS (ed) Heterochromatin: molecular and structural aspects. Cambridge University Press, Cambridge, pp 148–186

    Google Scholar 

  • Lorite P, Carrillo JA, Tinaut A, Palomeque T (2002a) Comparative study of satellite DNA in ants of the Messor genus. Gene 297(1–2):113–122

    Article  PubMed  CAS  Google Scholar 

  • Lorite P, Renault S, Rouleux-Bonnin F, Bigot S, Periquet G, Palomeque T (2002b) Genomic organization and transcription of satellite DNA in the ant Aphaenogaster subterranea (Hymenoptera, Formicidae). Genome 45:609–616

    Article  PubMed  CAS  Google Scholar 

  • Lu BY, Ma J, Eissenberg JC (1998) Developmental regulation of heterochromatin-mediated silencing in Drosophila. Development 125:2223–2234

    PubMed  CAS  Google Scholar 

  • Lucchesi JC, Kelly WG, Panning B (2005) Chromatin remodeling in dosage compensation. Annu Rev Genet 39:615–651

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Guitarte JL, Díez JL, Morcillo G (2008) Transcription and activation under environmental stress of the complex telomeric repeats of Chironomus thummi. Chromosome Res 16(8):1085–1096

    Article  PubMed  Google Scholar 

  • Masumoto H, Masukata H, Muro Y, Nozaki N, Okazaki T (1989) A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J Cell Biol 109:1963–1973

    Article  PubMed  CAS  Google Scholar 

  • Meštrović N, Plohl M, Mravinac B, Ugarković Ð (1998) Evolution of satellite DNAs from the genus Palorus – experimental evidence for the ‘library’ hypothesis. Mol Biol Evol 15:1062–1068

    Article  PubMed  Google Scholar 

  • Metz A, Soret J, Vourc’h C, Tazi J, Jolly C (2004) A key role for stress-induced satellite III transcripts in the relocalization of splicing factors into nuclear stress granules. J Cell Sci 117:4551–4558

    Article  PubMed  CAS  Google Scholar 

  • Mravinac B, Plohl M, Meštrović N, Ugarković Đ (2002) Sequence of PRAT satellite DNA “frozen” in some coleopteran species. J Mol Evol 54:774–783

    Article  PubMed  CAS  Google Scholar 

  • Mravinac B, Plohl M, Ugarković Đ (2004) Conserved patterns in the evolution of Tribolium satellite DNAs. Gene 332:169–177

    Article  PubMed  CAS  Google Scholar 

  • Mravinac B, Plohl M, Ugarković Đ (2005) Preservation and high sequence conservation of satellite DNAs suggest functional constraints. J Mol Evol 61:542–550

    Article  PubMed  CAS  Google Scholar 

  • Ohzeki J, Nakano M, Okada T, Masumoto H (2002) CENP-B box is required for de novo centromere chromatin assembly on human alphoid DNA. J Cell Biol 159:765–775

    Article  PubMed  CAS  Google Scholar 

  • Palomeque T, Lorite P (2008) Satellite DNA in insects: a review. Heredity 100:564–573

    Article  PubMed  CAS  Google Scholar 

  • Pezer Z, Ugarković Đ (2008) RNA Pol II promotes transcription of centromeric satellite DNA in beetles. PLoS One 3:e1594

    Article  PubMed  Google Scholar 

  • Pezer Z, Ugarković Đ (2009) Transcription of pericentromeric heterochromatin in beetles – satellite DNAs as active regulatory elements. Cytogenet Genome Res 124:268–276

    Article  PubMed  CAS  Google Scholar 

  • Pimpinelli S, Sullivan W, Prout M, Sandler L (1985) On biological functions mapping to the heterochromatin of Drosophila melanogaster. Genetics 109:701–724

    PubMed  CAS  Google Scholar 

  • Plohl M, Meštrović N, Bruvo B, Ugarković Đ (1998) Similarity of structural features and evolution of satellite DNAs from Palorus subdepressus (Coleoptera) and related species. J Mol Evol 46:234–249

    Article  PubMed  CAS  Google Scholar 

  • Pons J (2004) Cloning and characterization of a transponsable-like repeat in the heterochromatin of the darkling beetle Misolampus goudoti. Genome 47:769–774

    Article  PubMed  CAS  Google Scholar 

  • Pons J, Bruvo B, Juan C, Petitpierre E, Plohl M, Ugarković Ð (1997) Conservation of satellite DNA in species of the genus Pimelia (Tenebrionidae, Coleoptera). Gene 205:183–190

    Article  PubMed  CAS  Google Scholar 

  • Raff JW, Kellum R, Alberts B (1994) The Drosophila GAGA transcription factor is associated with specific regions of heterochromatin throughout the cell cycle. EMBO J 13:5977–5983

    PubMed  CAS  Google Scholar 

  • Renault S, Rouleux-Bonnin F, Periquet G, Bigot Y (1999) Satellite DNA transcription in Diadromus pulchellus (Hymenoptera). Insect Biochem Mol Biol 29:103–111

    Article  PubMed  CAS  Google Scholar 

  • Rojas AA, Vázquez-Tello A, Ferbeyre G, Venanzetti F, Bachmann L, Paquin B et al (2000) Hammerhead-mediated processing of satellite pDo500 family transcripts from Dolichopoda cave crickets. Nucleic Acids Res 28:4037–4043

    Article  PubMed  CAS  Google Scholar 

  • Romanova LY, Deriagin GV, Mashkova TD, Tumeneva IG, Mushegian AR, Kisselev LL, Alexandrov IA (1996) Evidence for selection in evolution of alpha satellite DNA: the central role of CENP-B/pJ alpha binding region. J Mol Biol 261(3):334–340

    Article  PubMed  CAS  Google Scholar 

  • Rouleux-Bonnin F, Renault S, Bigot Y, Periquet G (1996) Transcription of four satellite DNA subfamilies in Diprion pini (Hymenoptera, Symphyta, Diprionidae). Eur J Biochem 238:752–759

    Article  PubMed  CAS  Google Scholar 

  • Rouleux-Bonnin F, Bigot S, Bigot Y (2004) Structural and transcriptional features of Bombus terrestris satellite DNA and their potential involvement in the differentiation process. Genome 47:877–888

    Article  PubMed  CAS  Google Scholar 

  • Rudert F, Bronner S, Garnier J-M, Dollé P (1995) Transcripts from opposite strands of gamma satellite DNA are differentially expressed during mouse development. Mamm Genome 6:76–83

    Article  PubMed  CAS  Google Scholar 

  • Schueler MG, Higgins AW, Rudd MK, Gustashaw K, Willard HF (2001) Genomic and genetic definition of a functional human centromere. Science 294:109–115

    Article  PubMed  CAS  Google Scholar 

  • Shestakova EA, Mansuroglu Z, Mokrani H, Ghinea N, Bonnefoy E (2004) Transcription factor YY1 associates with pericentromeric y-satellite DNA in cycling but not in quiescent (G0) cells. Nucleic Acids Res 32:4390–4399

    Article  PubMed  CAS  Google Scholar 

  • Spradling AC, de Cicco DV, Wakimoto BT, Levine JF, Katfayan LJ, Cooley L (1987) Amplification of the X-linked Drosophila chorion gene cluster requires a region upstream from the s38 chorion gene. EMBO J 6:1045–1053

    PubMed  CAS  Google Scholar 

  • Sun X, Wahlstrom J, Karpen GH (1997) Molecular structure of a functional Drosophila centromere. Cell 91:1007–1019

    Article  PubMed  CAS  Google Scholar 

  • Tartof KD, Hobbs C, Jones M (1984) A structural basis for variegating position effects. Cell 37:869–878

    Article  PubMed  CAS  Google Scholar 

  • Tomoyasu Y, Miller SC, Tomita S, Schoppmeier M, Grossman D, Bucher G (2008) Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium. Genome Biol 9:R10

    Article  PubMed  Google Scholar 

  • Trapitz P, Wlaschek M, Bunemann H (1988) Structure and function of Y chromosomal DNA II. Analysis of lampbrush loop associated transcripts in nuclei of primary spermatocytes of Drosophila hydei by in situ hybridization using asymmetric RNA probes of four different families of repetitive DNA. Chromosoma 96:159–170

    Article  PubMed  CAS  Google Scholar 

  • Ugarković Đ (2005) Functional elements residing within satellite DNAs. EMBO Rep 6:1035–1039

    Article  PubMed  Google Scholar 

  • Ugarković Đ (2008) Satellite DNA libraries and centromere evolution. Open Evol J 2:1–6

    Article  Google Scholar 

  • Ugarković Đ (2009a) Centromere: structure and evolution. Springer, Berlin

    Book  Google Scholar 

  • Ugarković Đ (2009b) Centromere-competent DNA: structure and evolution. Prog Mol Subcell Biol 48:53–76

    Article  PubMed  CAS  Google Scholar 

  • Ugarković Đ, Plohl M, Lucijanić-Justić V, Borštnik B (1992) Detection of satellite DNA in Palorus ratzeburgii: analysis of curvature profiles and comparison with Tenebrio molitor satellite DNA. Biochimie 74:1075–1082

    Article  PubMed  Google Scholar 

  • Ugarković Đ, Podnar M, Plohl M (1996) Satellite DNA of the red flour beetle Tribolium castaneum – comparative study of satellites from the genus Tribolium. Mol Biol Evol 13:1059–1066

    Article  PubMed  Google Scholar 

  • Ugarković Đ, Plohl M (2002) Variation in satellite DNA profiles – causes and effects. EMBO J 21(22):5955–5959

    Article  PubMed  Google Scholar 

  • Usakin L, Abad J, Vagin VV, de Pablos B, Villasante A et al (2007) Transcription of the 1.688 Satellite DNA family is under the control of RNA interference machinery in Drosophila melanogaster ovaries. Genetics 176:1343–1349

    Article  PubMed  CAS  Google Scholar 

  • Valgardsdottir R, Chiodi I, Giordano M, Cobianchi F, Riva S, Biamonti G (2005) Structural and functional characterization of noncoding repetitive RNAs transcribed in stressed human cells. Mol Biol Cell 16:2597–2604

    Article  PubMed  CAS  Google Scholar 

  • Varadaraj K, Skinner DM (1994) Cytoplasmic localization of transcripts of a complex G + C-rich crab satellite DNA. Chromosoma 103:423–431

    Article  PubMed  CAS  Google Scholar 

  • Volpe TA, Kidner C, Hall IM, Teng G, Grewal SIS, Martienssen RA (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297:1833–1837

    Article  PubMed  CAS  Google Scholar 

  • Waye JS, Willard HF (1986) Structure, organization, and sequence of alpha satellite DNA from human chromosome 17: evidence for evolution by unequal crossing-over and an ancestral pentamer repeat shared with the human X chromosome. Moll Cell Biol 6:3156–3165

    Google Scholar 

  • Wu ZG, Murphy C, Gall JG (1986) A transcribed satellite DNA from the bullfrog Rana catesbeiana. Chromosoma 93(4):291–297

    Article  PubMed  CAS  Google Scholar 

  • Zheng B, Wang Z, Li S, Yu B, Liu JY, Chen X (2009) Intergenic transcription by RNA polymerase II coordinates Pol IV and Pol V in siRNA-directed transcriptional gene silencing in Arabidopsis. Genes Dev 23:2850–2860

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by EU FP6 Marie Curie Transfer of Knowledge Grant MTKD-CT-2006-042248 and grant 00982604 from the Croatian Ministry of Science. Isidoro Feliciello is Marie Curie Fellow at Ruder Boskovic Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Đurđica Ugarković .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pezer, Ž., Brajković, J., Feliciello, I., Ugarković, Đ. (2011). Transcription of Satellite DNAs in Insects. In: Ugarkovic, D. (eds) Long Non-Coding RNAs. Progress in Molecular and Subcellular Biology(), vol 51. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16502-3_8

Download citation

Publish with us

Policies and ethics