Skip to main content

Specific Pharmacokinetic Aspects of the Urinary Tract

  • Chapter
  • First Online:
Book cover Urinary Tract

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 2011))

Abstract

This chapter reviews the evidence for “specific” pharmacokinetics playing a role in currently marketed drugs intended to treat lower urinary tract (LUT) symptoms. Principles of drug targeting include intrinsic properties of drugs or organs as well as drug formulations to modify drug release or to create confinement of drug presence. Prodrugs and specific formulations to deliver high drug concentrations at the site(s) of action as well as other ways to manipulate drug distribution to achieve enrichment in target tissues are considered. In overactive bladder (OAB), specific formulations for oxybutynin have been introduced to reduce the level of side effects of the active drug. Extended release tablet formulations and a topical gel formulation have been introduced, with efficacy similar to immediate release (IR) tablets, but with a reduction in anticholinergic adverse effects. However, these modifications have not led to outstanding performance parameters compared to other anticholinergic drugs marketed as IR formulations. Urinary excretion is discussed as potential mechanism for targeting LUT symptoms, but no strong indications appear to exist that this mechanism would contribute for currently available drugs. Intravesical administration of drugs is not a preferred option and only considered for drugs like botulinum toxin, where the inconvenient application compensates for a reasonable degree of long-term efficacy in severe refractory OAB. Alpha acid glycoprotein binding is discussed as a potential factor to influence drug tissue distribution, and it is concluded that there is reasonable evidence that for tamsulosin this mechanism is responsible for the difference in free fraction of the drug observed in plasma and prostate, which could contribute to its relative absence of blood pressure effects in patients with LUT symptoms related to benign prostate hyperplasia (LUTS-BPH). The principle of irreversible inhibition of type II 5α-reductase as a tool to develop drugs to reduce prostatic levels of dihydrotestosterone is employed by both dutasteride and finasteride for treatment of LUTS-BPH. Of the mechanisms discussed, the principles employed for the 5α-reductase blockers and tamsulosin in this respect can be considered relatively specific for its urological indication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen UO, Bøg-Hansen TC, Kirkeby S (1996) Lectin-like receptor for α1-acid glycoprotein in the epithelium of the rat prostate gland and seminal vesicles. Prostate 29:356–361

    Article  CAS  PubMed  Google Scholar 

  • Anderson RU, Mobley D, Blank B et al (1999) Once daily controlled versus immediate release oxybutynin choloride for urge urinary incontinence. J Urol 161:1809–1812

    Article  CAS  PubMed  Google Scholar 

  • Andersson K-E (1998) The concept of uroselectivity. Eur Urol 33(suppl 2):7–11

    Article  CAS  PubMed  Google Scholar 

  • Apodaca G (2004) The uroepithelium: not just a passive barrier. Traffic 5:117–128

    Article  CAS  PubMed  Google Scholar 

  • Apostolidis A, Gonzales GE, Fowler CJ (2006) Effect of intravesical resiniferatoxin on lower urinary tract symptoms, urodynamic parameters, and quality of life of patients with urodynamic increased bladder sensation. Eur Urol 50:1299–1305

    Article  CAS  PubMed  Google Scholar 

  • Appell RA, Chancellor MB, Zobrist RH et al (2003) Pharmacokinetics, metabolism and saliva output during transdermal and extended-release oral oxybutynin administration in healthy subjects. Mayo Clin Proc 78:696–702

    Article  CAS  PubMed  Google Scholar 

  • Baldwin CM, Keating GM (2009) Transdermal oxybutynin. Drugs 69:327–337

    Article  CAS  PubMed  Google Scholar 

  • Bilello JA, Bilello PA, Prichard M et al (1995) Reduction of the in vitro activity of A77003, an inhibitor of human immunodeficiency virus protease, by human serum 1 acid glycoprotein. J Infect Dis 171:559–565

    Google Scholar 

  • Caramelli KE, Staskin DR, Volinn W (2008) Steady-state pharmacokinetics of an investigational oxybutynin gel in comparison with oxybutynin transdermal system. J Urol 179(suppl):1508

    Google Scholar 

  • Chapple CR, Khullar V, Gabriel Z et al (2008) The effects of antimuscarinic treatments in overactive bladder: an update of a systematic review and meta-analysis. Eur Urol 54:543–562

    Article  CAS  PubMed  Google Scholar 

  • Chuang YC, Thomas CA, Tyagi T et al (2008) Human urine with solifenacin intake but not tolterodine or darifenacin blocks detrusor overactivity. Int Urogynecol J 19:1353–1357

    Article  Google Scholar 

  • Chung M, Vashi V, Puente J et al (1999) Clinical pharmacokinetics of doxazosin in a controlled-release gastrointestinal therapeutic system (GITS) formulation. Br J Clin Pharmacol 48:678–687

    Article  CAS  PubMed  Google Scholar 

  • Cole P (2004) Fesoterodine, an advanced antimuscarinic for the treatment of overactive bladder: a safety update. Drugs Future 29:715–720

    Article  CAS  Google Scholar 

  • DeWachter S, Wyndaele J (2003) Intravesical oxybutynin: a local anesthetic effect on bladder C afferents. J Urol 169:1892–1895

    Article  CAS  Google Scholar 

  • Drugdex Evaluations (2008a) Fesoterodine. https://www.login.thomson-pharma.com/pcsso/sso

  • Drugdex Evaluations (2008b) Solifenacin. https://www.login.thomson-pharma.com/pcsso/sso

  • Drugdex Evaluations (2009a) Oxybutynin. https://www.login.thomson-pharma.com/pcsso/sso

  • Drugdex Evaluations (2009b) Tolterodine. https://www.login.thomson-pharma.com/pcsso/sso

  • Dubé JY, Paradis G, Tetu B, Tremblay RR (1989) Synthesis of α1-acid glycoprotein by the human prostate. Prostate 15:251–258

    Article  PubMed  Google Scholar 

  • Fuse E, Hashimoto A, Sato N et al (2000) Physiological modeling of altered pharmacokinetics of a novel anticancer drug. UCN-01 (7-hydroxystaurosporine) caused by slow dissociation of UCN-01 from human 1-acid glycoprotein. Pharm Res 17:553–564

    Article  CAS  PubMed  Google Scholar 

  • Gabay C, Kushner I (1999) Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 340:448–454

    Article  CAS  PubMed  Google Scholar 

  • Guay R (2003) Clinical pharmacokinetics of drugs used to treat urge incontinence. Clin Pharmacokinet 42:1243–1265

    Article  CAS  PubMed  Google Scholar 

  • Gupta SK, Sathyan G (1999) Pharmacokinetics of an oral once-a-day controlled-release oxybutynin formulation compared with immediate-release oxybutynin. J Clin Pharmacol 39:289–296

    CAS  PubMed  Google Scholar 

  • Hills CJ, Winter SA, Balfour JA (1998) Tolterodine. Drugs 55:813–820

    Article  CAS  PubMed  Google Scholar 

  • Kaplinsky R (1996) Expanded follow-up of intravesical oxybutynin chloride use in children with neurogenic bladder. J Urol 156:753–756

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Yoshimura N, Masida H et al (2005) Intravesical instillation of human urine after oral administration of trospium, tolterodine and oxybutynin in a rat model of detrusor overactivity. BJU Int 97:400–403

    Article  Google Scholar 

  • Korstanje C, de Wijn S, van den Berg S, Swart P (2002) Selective retention of tamsulosin in prostate and bladder & uroselectivity in rat as compared to dog. J Urol 167(suppl):218

    Google Scholar 

  • Kremer JMH, Wilting J, HM JL (1988) Drug binding to human alpha-1-acid glycoprotein in health and disease. Pharmacol Rev 40:1–47

    CAS  PubMed  Google Scholar 

  • Lazar J, Braun DC, Toth A et al (2006) Kinetics of penetration influence the apparent potency of vanilloids on TRPV1. Mol Pharmacol 69:1166–1173

    Article  CAS  PubMed  Google Scholar 

  • Lehtoranta K, Tainio H, Lukkari-Lax E et al (2002) Pharmacokinetics, efficacy, and safety of intravesical formulation of oxybutynin in patients with detrusor overactivity. Scand J Urol Nephrol 36:18–24

    Article  CAS  PubMed  Google Scholar 

  • Lewis SA (2000) Everything you wanted to know about the bladder epithelium but were afraid to ask. Am J Renal Physiol 278:F867–F874

    CAS  Google Scholar 

  • MacDiarmid SA (2009) The evolution of transdermal/topical overactive bladder therapy and its benefit over oral therapy. Rev Urol 11:1–6

    PubMed  Google Scholar 

  • Magnussen BM, Koskinen LD (2000) In vitro percutaneous penetration of topically applied capsaicin in relation to in vivo sensation responses. Int J Pharm 195:55–62

    Article  Google Scholar 

  • Malcowicz SB (2006) The role of intravescical chemotherapy in the treatment of bladder cancer. In: Lerner SP, Schoenberg M, Sternberg C (eds) Textbook of bladder cancer. Taylor and Francis, New York

    Google Scholar 

  • Matsushima H, Kamimura H, Soeishi Y et al (1998) Pharmacokinetics and plasma protein binding of tamsulosin hydrochloride in rats, dogs, and humans. Drug Metab Disp 26:240–245

    CAS  PubMed  Google Scholar 

  • McGrath JC, Lepor H, Wyllie MG (1996) Report of a unique meeting between the alpha-blocker subcommittee and the pharmaceutical industry. Urology 48:665–667

    Article  CAS  PubMed  Google Scholar 

  • McNulty AM, Audia JE, Bemis KG et al (2000) Kinetic analysis of LY320236: competitive inhibitor of type I and non-competitive inhibitor of type II human steroid 5α-reductase. J Steroid Biochem Mol Biol 72:13–21

    Article  CAS  PubMed  Google Scholar 

  • Michel MC, Korstanje C, Krauwinkel W, Kuipers M (2005) The pharmacokinetic profile of tamsulosin oral controlled absorption system (OCAS(R)). Eur Urol 2(suppl 4):15–24

    Google Scholar 

  • Micomedex Healthcare series (2008a) Dutasteride. https://www.login.thomson-pharma.com/pcsso/sso

  • Micomedex Healthcare series (2008b) Enablex. https://www.login.thomson-pharma.com/pcsso/sso

  • Micomedex Healthcare series (2008c) Uroxatral. https://www.login.thomson-pharma.com/pcsso/sso

  • Micromedex Healthcare series (2008d) Sanctura XR. https://www.login.thomson-pharma.com/pcsso/sso

  • Micomedex Healthcare series (2009) Tamsulosin. https://www.login.thomson-pharma.com/pcsso/sso

  • Mizuno N, Niwa T, Yotsumoto Y, Sugyama Y (2003) Impact of drug transporter studies on drug discovery and development. Pharmacol Rev 55:425–461

    Article  CAS  PubMed  Google Scholar 

  • Moss ML, Kuzmic P, Stuart JD et al (1996) Inhibition of human 5alpha reductases type I and II by 6-aza-steroids: structural determinants of one-step vs. two-step mechanism. Biochemistry 35:3457–3464

    Article  CAS  PubMed  Google Scholar 

  • Mottet N, Bressolle F, Delmas V et al (2003) Prostatic tissual distribution of alfuzosin in patients with benign prostatic hyperplasia following repeated oral administration. Eur Urol 44:101–105

    Article  CAS  PubMed  Google Scholar 

  • Nilvebrant L (2000) The mechanism of action of tolterodine. Rev Contemp Pharmacother 11:13–27

    CAS  Google Scholar 

  • Olsson B, Szamosi J (2001) Multiple dose pharmacokinetics of a new once daily extended release tolterodine formulation versus immediate release tolterodine. Clin Pharmacokinet 40:227–235

    Article  CAS  PubMed  Google Scholar 

  • Quin M, Øie S (1994) Does α1-acid glycoprotein act as a non-functional receptor for α1-adrenergic antagonists? J Pharm Pharmacol 46:896–901

    Google Scholar 

  • Rapp DE, Lucioni A, Katz EE et al (2004) Use of botulinum-A toxin for the treatment of fefractory overactive bladder symptoms: an initial experience. Urology 63:1071–1075

    Article  PubMed  Google Scholar 

  • Romics I, Kiss T, Kisbenedek L et al (2003) Tamsulosin drug ratio in prostate versus free fraction in plasma supports pharmacokinetic contribution to its uroselectivity. J Urol 169(suppl):288

    Google Scholar 

  • Rowland M, Tozer TN (1995) Clinical pharmacokinetics. Williams & Wilkins, New York

    Google Scholar 

  • Saito M, Watanabe T, Tabuchi M et al (2004) Urodynamic effects and safety of modified intravesical oxybutynin chloride in patients with neurogenic detrusor overactivity: 3 years experience. Int J Urol 11:592–596

    Article  PubMed  Google Scholar 

  • Sathayan G, Chancellor MB, Gupta SK (2001) Effect or OROS controlled-release delivery on the pharmacokinetics and pharmacodynamics of oxybutynin chloride. Br J Clin Pharmacol 52:409–417

    Article  Google Scholar 

  • Sato S, Ohtake A, Matsushima H et al (2001) Pharmacological effect of tamsulosin in relation to dog plasma and tissue concentrations: prostatic and urethral retention possibly contributes to uroselectivity of tamsulosin. J Pharmacol Exp Ther 296:697–703

    CAS  PubMed  Google Scholar 

  • Shibukawa A, Ishizawa N, Kimura T et al (2002) Plasma protein binding study of oxybutynin by high-performance frontal analysis. J Chromatogr 768:177–188

    Article  CAS  Google Scholar 

  • Silva C, Rio M, Cruz F (2000) Desensitization of bladder sensory fibres by intravesical Resiniferatoxin, a capsaicin analogue: long-term results for the treatment of detrusor hyperreflexia. Eur Urol 38:444–452

    Article  CAS  PubMed  Google Scholar 

  • Silva C, Ribeiro MJ, Cruz F (2002) The effect of intravesical resiniferatoxin in patients with idiopathic detrusor instability suggests that involuntary detrusor contractions are triggered by C-fiber input. J Urol 168:575–579

    Article  CAS  PubMed  Google Scholar 

  • Simon HW, Malbotra B (2009) The pharmacokinetic profile of fesoterodine: similarities and differences to tolterodine. Swiss Med Wkly 139:146–151

    CAS  PubMed  Google Scholar 

  • Sommadossi J-P, Schinazi RF, McMillan A, et al. (1995) A human serum glycoprotein profoundly affects antiviral activity of the protease inhibitor SC-52151 by decreasing its cellular uptake. In: Program and abstracts for the second national conference of human retroviruses and related infections. Washington, DC

    Google Scholar 

  • Steiner JF (1996) Clinical pharmacokinetics and pharmacodynamics of finasteride. Clin Pharmacokinet 30:16–27

    Article  CAS  PubMed  Google Scholar 

  • Stuart JD, Lee FW, Simpson Noel D et al (2001) Pharmacokinetic parameters and mechanism of inhibition of rat type 1 and 2 steroid 5alpha-reductasees: determinants for different in vivo activities of GI198745 and finasteride in the rat. Biochem Pharmacol 62:933–942

    Article  CAS  PubMed  Google Scholar 

  • Vashi V, Chung M, Puente J, Sweeney M (1998) Clinical pharmacokinetics of a controlled-release doxazosin gastrointestinal therapeutic system (GITS) developed for use in BPH. Eur Urol 33(suppl 1):129

    Google Scholar 

  • Versi E, Appell R, Mobley D et al (2000) Dry mouth with conventional and controlled-release oxybutynin in urinary incontinence. Obstet Gynecol 95:718–721

    Article  CAS  PubMed  Google Scholar 

  • Waldeck K, Larsson B, Andersson KE (1997) Comparison of oxybutynin and its active metabolite N-desethyloxybutynin in the human detrusor and parotid gland. J Urol 157:1093–1097

    Article  CAS  PubMed  Google Scholar 

  • Wolters FLC, Korstanje C, Swart PJ (2004) Uroselectivity of tamsulosin can be explained by higher free fraction in prostate tissue. Abstract Figon Dutch Medicines Days

    Google Scholar 

  • Yamada S, Tanaka C, Kimura R, Kawabe K (1994) Alpha1-adrenoceptors in human prostate: characterization and binding characteristics of alpha1-antagonists. Life Sci 54:1845–1854

    Article  CAS  PubMed  Google Scholar 

  • Yamada S, Ohkura T, Deguchi Y, Kimura R (1999) In vivo measurement by [3H] Tamsulosin of α1-adrenoceptors in rat tissues in relation to the pharmacokinetics. J Pharmacol Exp Ther 289:1575–1583

    CAS  PubMed  Google Scholar 

  • Zobrist RH, Quan D, Thomas HM et al (2003) Pharmacokinetics and metabolism of transdermal oxybutynin in vitro and in vivo performance of a novel delivery system. Pharm Res 20:103–109

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cees Korstanje .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Korstanje, C., Krauwinkel, W. (2011). Specific Pharmacokinetic Aspects of the Urinary Tract. In: Andersson, KE., Michel, M. (eds) Urinary Tract. Handbook of Experimental Pharmacology, vol 2011. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16499-6_13

Download citation

Publish with us

Policies and ethics