Skip to main content

Potential Applications of Gene Therapy/Transfer to the Treatment of Lower Urinary Tract Diseases/Disorders

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 2011))

Abstract

Identification of molecular targets for novel therapeutics is a natural consequence of the age of molecular and personalized medicine. How this information is leveraged and applied to the treatment of functional diseases/disorders of the lower urinary tract will determine if this field of medicine can keep pace with technological developments and patient expectations for improved therapies. In this regard, therapeutic improvements for the treatment of lower urinary tract diseases and disorders have been largely incremental over the past 30 years. The goal of this report is to review the evidence pointing toward the enormous potential of gene therapy/transfer to provide a paradigm shift from palliative to curative therapeutic solutions for lower urinary tract diseases/disorders. In fact, it seems clear that gene therapy represents a biotechnology approach particularly suitable to applications in the lower urinary tract. Although much more research is required, ample preclinical evidence already indicates that, for example, gene therapy can favorably impact/alter virtually every aspect of bladder physiology/function. In short, further investigations and continued applications of gene therapy to the treatment of lower urinary tract diseases/disorders seems a prudent step toward potentially marked and more durable therapeutic improvements.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andersson KE (2009) Pharmacotherapy of the overactive bladder. Discov Med 8:118–124

    PubMed  Google Scholar 

  • Andersson KE, Appell R, Awad S (2005) Pharmacological treatment of urinary incontinence. In: Abrams P, Khoury S, Wein A (eds) Incontinence, 3rd International Consultation on Incontinence. Helath, Paris, pp 811–854

    Google Scholar 

  • Andersson KE, Chapple CR, Cardozo L, Cruz F, Hashim H, Michel MC, Tannenbaum C, Wein AJ (2009) Pharmacological treatment of overactive bladder: report from the International Consultation on Incontinence. Curr Opin Urol 19:380–394

    Article  PubMed  Google Scholar 

  • Anidjar M, Mongiat-Artus P, Brouland JP, Cochand-Priollet B, Teillac P, Le Duc A, Berthon P, Cussenot O (1999) Ureteral gene transfer to porcine induced strictures using endourologic delivery of an adenoviral vector. J Urol 161:1636–1643

    Article  CAS  PubMed  Google Scholar 

  • Christ GJ (2004) Gene therapy treatments for erectile and bladder dysfunction. Curr Urol Rep 5:52–60

    Article  PubMed  Google Scholar 

  • Christ GJ, Hodges S (2006) Molecular mechanisms of detrusor and corporal myocyte contraction: identifying targets for pharmacotherapy of bladder and erectile dysfunction. Br J Pharmacol 147(Suppl 2):S41–S55

    Article  CAS  PubMed  Google Scholar 

  • Christ GJ, Day NS, Day M, Santizo C, Zhao W, Sclafani T, Zinman J, Hsieh K, Venkateswarlu K, Valcic M, Melman A (2001) Bladder injection of “naked” hSlo/pcDNA3 ameliorates detrusor hyperactivity in obstructed rats in vivo. Am J Physiol Regul Integr Comp Physiol 281:R1699–R1709

    CAS  PubMed  Google Scholar 

  • Christ GJ, Day NS, Day M, Zhao W, Persson K, Pandita RK, Andersson KE (2003a) Increased connexin43-mediated intercellular communication in a rat model of bladder overactivity in vivo. Am J Physiol Regul Integr Comp Physiol 284:R1241–R1248

    CAS  PubMed  Google Scholar 

  • Christ GJ, Venkateswarlu K, Day NS, Valcic M, Santizo C, Zhao W, Wang HZ, Persson K, Andersson KE (2003b) Intercellular communication and bladder function. Adv Exp Med Biol 539:239–254

    PubMed  Google Scholar 

  • Christ GJ, Hodges S, Melman A (2006) An update on gene therapy/transfer treatments for bladder dysfunction. Curr Bladder Dysfunct Rep 1:119–125

    Article  Google Scholar 

  • Christ G, Andersson KE, Atala A (2007) The future of bladder research: molecular profiling, new drug targets, gene therapy, and tissue engineering. Curr Urol Rep 8:95–99

    Article  PubMed  Google Scholar 

  • Chuang YC, Chou AK, Wu PC, Chiang PH, Yu TJ, Yang LC, Yoshimura N, Chancellor MB (2003) Gene therapy for bladder pain with gene gun particle encoding pro-opiomelanocortin cDNA. J Urol 170:2044–2048

    Article  CAS  PubMed  Google Scholar 

  • Fraser MO, Lavelle JP, Sacks MS, Chancellor MB (2002) The future of bladder control-intravesical drug delivery, a pinch of pepper, and gene therapy. Rev Urol 4:1–11

    PubMed  Google Scholar 

  • Goins WF, Yoshimura N, Phelan MW, Yokoyama T, Fraser MO, Ozawa H, Bennett NJ, de Groat WC, Glorioso JC, Chancellor MB (2001) Herpes simplex virus mediated nerve growth factor expression in bladder and afferent neurons: potential treatment for diabetic bladder dysfunction. J Urol 165:1748–1754

    Article  CAS  PubMed  Google Scholar 

  • Goins WF, Goss JR, Chancellor MB, de Groat WC, Glorioso JC, Yoshimura N (2009) Herpes simplex virus vector-mediated gene delivery for the treatment of lower urinary tract pain. Gene Ther 16:558–569

    Article  CAS  PubMed  Google Scholar 

  • Hamburg MA, Collins FS (2010) The path to personalized medicine. N Engl J Med 363:301–304

    Article  CAS  PubMed  Google Scholar 

  • Huard J, Yokoyama T, Pruchnic R, Qu Z, Li Y, Lee JY, Somogyi GT, de Groat WC, Chancellor MB (2002) Muscle-derived cell-mediated ex vivo gene therapy for urological dysfunction. Gene Ther 9:1617–1626

    Article  CAS  PubMed  Google Scholar 

  • Johnston J, Baylis F (2004) Gene therapy: two steps forward, one step back. CMAJ 170:1785–1786

    PubMed  Google Scholar 

  • Kanai AJ, Zeidel ML, Lavelle JP, Greenberger JS, Birder LA, de Groat WC, Apodaca GL, Meyers SA, Ramage R, Epperly MW (2002) Manganese superoxide dismutase gene therapy protects against irradiation-induced cystitis. Am J Physiol Renal Physiol 283:F1304–F1312

    CAS  PubMed  Google Scholar 

  • Kay MA, High K (1999) Gene therapy for the hemophilias. Proc Natl Acad Sci USA 96:9973–9975

    Article  CAS  PubMed  Google Scholar 

  • Kay MA, Manno CS, Ragni MV, Larson PJ, Couto LB, McClelland A, Glader B, Chew AJ, Tai SJ, Herzog RW, Arruda V, Johnson F, Scallan C, Skarsgard E, Flake AW, High KA (2000) Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nat Genet 24:257–261

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Lin H, Barr E, Chu L, Leiden JM, Parmacek MS (1997) Transcriptional targeting of replication-defective adenovirus transgene expression to smooth muscle cells in vivo. J Clin Invest 100:1006–1014

    Article  CAS  PubMed  Google Scholar 

  • Ku JH, Kim Y, Moon KC, Kim YS, Kim MS, Kim HH, Paick JS (2006) In vivo hepatocyte growth factor gene transfer to bladder smooth muscle after bladder outlet obstruction in the rat: a morphometric analysis. J Urol 176:1230–1235

    Article  CAS  PubMed  Google Scholar 

  • Lu SH, Cannon TW, Chermanski C, Pruchnic R, Somogyi G, Sacks M, de Groat WC, Huard J, Chancellor MB (2003) Muscle-derived stem cells seeded into acellular scaffolds develop calcium-dependent contractile activity that is modulated by nicotinic receptors. Urology 61:1285–1291

    Article  PubMed  Google Scholar 

  • Marshall E (2001) Gene therapy. Viral vectors still pack surprises. Science 294:1640

    Article  CAS  PubMed  Google Scholar 

  • Melman A, Bar-Chama N, McCullough A, Davies K, Christ G (2005) The first human trial for gene transfer therapy for the treatment of erectile dysfunction: preliminary results. Eur Urol 48:314–318

    Article  CAS  PubMed  Google Scholar 

  • Meria P, Anidjar M, Brouland JP, Teillac P, Berthon P, Cussenot O (2000) Gene transfer to urethral strictures in rabbits: a preliminary report. BJU Int 85:1120–1125

    Article  CAS  PubMed  Google Scholar 

  • Miyazato M, Sugaya K, Goins WF, Wolfe D, Goss JR, Chancellor MB, de Groat WC, Glorioso JC, Yoshimura N (2009) Herpes simplex virus vector-mediated gene delivery of glutamic acid decarboxylase reduces detrusor overactivity in spinal cord-injured rats. Gene Ther 16:660–668

    Article  CAS  PubMed  Google Scholar 

  • Morgan RA, Anderson WF (1993) Human gene therapy. Annu Rev Biochem 62:191–217

    Article  CAS  PubMed  Google Scholar 

  • Otani M, Yoshida M, Iwashita H, Kawano Y, Miyamae K, Inadome A, Nishi T, Ueda S (2004) Electroporation-mediated muscarinic M3 receptor gene transfer into rat urinary bladder. Int J Urol 11:1001–1008

    Article  CAS  PubMed  Google Scholar 

  • Pattee SR (2008) Protections for participants in gene therapy trials: a patient’s perspective. Hum Gene Ther 19:9–10

    Article  CAS  PubMed  Google Scholar 

  • Sasaki K, Chancellor MB, Goins WF, Phelan MW, Glorioso JC, de Groat WC, Yoshimura N (2004) Gene therapy using replication-defective herpes simplex virus vectors expressing nerve growth factor in a rat model of diabetic cystopathy. Diabetes 53:2723–2730

    Article  CAS  PubMed  Google Scholar 

  • Tyagi S, Tyagi P, Van-le S, Yoshimura N, Chancellor MB, de Miguel F (2006) Qualitative and quantitative expression profile of muscarinic receptors in human urothelium and detrusor. J Urol 176:1673–1678

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama T, Chancellor MB, Yoshimura N, Huard J, Kumon H (2001) Gene therapy and tissue engineering for urologic dysfunction: status and prospects. Mol Urol 5:67–70

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama H, Sasaki K, Franks ME, Goins WF, Goss JR, de Groat WC, Glorioso JC, Chancellor MB, Yoshimura N (2009a) Gene therapy for bladder overactivity and nociception with herpes simplex virus vectors expressing preproenkephalin. Hum Gene Ther 20:63–71

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama H, Sasaki K, Franks ME, Goins WF, Goss JR, Degroat WC, Glorioso J, Chancellor MB, Yoshimura N (2009b) Gene therapy for bladder overactivity and nociception with herpes simplex virus vectors expressing preproenkephalin. Hum Gene Ther 20:63–71

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura N, Franks ME, Sasaki K, Goins WF, Goss J, Yokoyama T, Fraser MO, Seki S, Fink J, Glorioso J, de Groat WC, Chancellor MB (2001) Gene therapy of bladder pain with herpes simplex virus (HSV) vectors expressing preproenkephalin (PPE). Urology 57:116

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George J. Christ .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Christ, G.J. (2011). Potential Applications of Gene Therapy/Transfer to the Treatment of Lower Urinary Tract Diseases/Disorders. In: Andersson, KE., Michel, M. (eds) Urinary Tract. Handbook of Experimental Pharmacology, vol 2011. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16499-6_12

Download citation

Publish with us

Policies and ethics