Technical Applications of the Physics of High Energy Densities

Part of the The Frontiers Collection book series (FRONTCOLL)


The unique possibilities of the physics of extreme states of matter became quite obvious just after the successful experiments (Fig. 0.1) of David [1]conducted nearly three thousand years ago. Since that time the range of application in this field has continued to expand, steadily spreading higher up the scale of pressure and temperature, and has involved ever wider spheres of human activity.


Laser Pulse Plasma Wave High Energy Density Terahertz Radiation Plasma Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bible. Old Testament, 1 Samuel, 17:34, 40, 43, 48–51Google Scholar
  2. [2]
    Andreev, N.E., Chizhonkov, E.V., Frolov, A.A., Gorbunov, L.M.: On laserwakefield acceleration in plasma channels. Nucl. Instrum. Methods Phys.Res. A 410(3), 469–476 (2002). DOI 10.1016/S0168-9002(98)00181-8Google Scholar
  3. [3]
    Andreev, N.E., Cros, B., Gorbunov, L.M., et al.: Laser wakefield structure ina plasma column created in capillary tubes. Phys. Plasmas 9(9), 3999–4009 (2002). DOI 10.1063/1.1497165CrossRefADSGoogle Scholar
  4. [4]
    Andreev, N.E., Gorbunov, L.M.: Laser-plasma acceleration of electrons. Phys. Usp. 42(1), 49 (1999). DOI 10.1070/PU1999v042n01ABEH000447.URL Scholar
  5. [5]
    Andreev, N.E., Gorbunov, L.M., Kirsanov, V.I., et al.: Structure of the wakefield in plasma channels. Phys. Plasmas 4(4), 1145–1153 (1997). DOI 10.1063/1.872186CrossRefADSGoogle Scholar
  6. [6]
    Andreev, N.E., Gorbunov, L.M., Kirsanov, V.I., et al.: Resonant excitation ofwakefields by a laser-pulse in a plasma. JETP Lett. 55(10), 571–576 (1992)ADSGoogle Scholar
  7. [7]
    Andreev, N.E., Gorbunov, L.M., Kirsanov, V.I., et al.: The theory of laserself-resonant wake field excitation. Phys. Scr. 49(1), 101–109 (1994). URL Google Scholar
  8. [8]
    Andreev, N.E., Gorbunov, L.M., Kirsanov, V.I., Sakharov, A.S.: Selfmodulationof high-intensity laser pulses in underlense plasmas and plasmachannels. AIP Conf. Proc. 396(1), 61–74 (1997). DOI 10.1063/1.52974.URL
  9. [9]
    Andreev, N.E., Kirsanov, V.I., Gorbunov, L.M.: Stimulated processes andself-modulation of a short intense laser pulse in the laser wake-field accelerator. Phys. Plasmas 2(6), 2573–2582 (1995). DOI 10.1063/1.871219CrossRefADSGoogle Scholar
  10. [10]
    Andreev, N.E., Kirsanov, V.I., Sakharov, A.S., et al.: On the phase velocity ofplasma waves in a self-modulated laser wake-field accelerator. Phys. Plasmas 3(8), 3121–3128 (1996). DOI 10.1063/1.871659CrossRefADSGoogle Scholar
  11. [11]
    Andreev, N.E., Nishida, Y., Yugami, N.: Propagation of short intenselaser pulses in gas-filled capillaries. Phys. Rev. E Bold>65(5), 056407 (2002). DOI 10.1103/PhysRevE.65.056407. URL
  12. [12]
    Antonsen Jr., T.M., Mora, P.: Self-focusing and Raman scattering of laserpulses in tenuous plasmas.Phys. Rev. Lett. 69(15), 2204–2207 (1992). URL Google Scholar
  13. [13]
    Antonsen Jr., T.M., Mora, P.: Self-focusing and Raman scattering of laserpulses in tenuous plasmas. Phys. Fluids B 5(5), 1440–1452 (1993). DOI 10.1063/1.860884. URL
  14. [14]
    Antonsen Jr., T.M., Palastro, J., Milchberg, H.M.: Excitation of terahertz radiationby laser pulses in nonuniform plasma channels. Phys. Plasmas 14(3), 033107 (2007). DOI 10.1063/1.2715864CrossRefADSGoogle Scholar
  15. [15]
    Atzeni, S., Meyer-ter-Vehn, J.: The Physics of Inertial Fusion. Oxford UniversityPress, Oxford (2004)CrossRefGoogle Scholar
  16. [16]
    Atzeni, S., Temporal, M., Honrubia, J.J.: A first analysis of fast ignition ofprecompressed ICF fuel by laser-accelerated protons. Nucl. Fusion 42(3), L1–L4 (2002). URL
  17. [17]
    Bakhmetjev, I.E., Fertman, A.D., Golubev, A.A., et al.: Research into theadvanced experimental methods for precision ion stopping range measurementsin matter. Laser Part. Beams 21(1), 1–6 (2003). DOI 10.1017/S0263034602211015CrossRefADSGoogle Scholar
  18. [18]
    Bakunov, M.I., Bodrov, S.B., Maslov, A.V., Sergeev, A.M.:Two-dimensional theory of Cherenkov radiation from shortlaser pulses in a magnetized plasma. Phys. Rev. E Bold>70(1), 016401 (2004). DOI 10.1103/PhysRevE.70.016401. URL Google Scholar
  19. [19]
    Bamber, C., Boege, S.J., Koffas, T., et al.: Studies of nonlinear QED incollisions of 46.6 GeV electrons with intense laser pulses. Phys. Rev.D 60(9), 092004 (1999). DOI 10.1103/PhysRevD.60.092004. URL Google Scholar
  20. [20]
    Belyaev, V.S., Krainov, V.P., Lisitsa, V.S., Matafonov, A.P.: Generation offast charged particles and superstrong magnetic fields in the interactionof ultrashort high-intensity laser pulses with solid targets. Phys. Usp.51(8), 793 (2008). DOI 10.1070/PU2008v051n08ABEH006541. URL Google Scholar
  21. [21]
    Berezhiani, V.I., Murusidze, I.G.: e+e- – Pair production by a focused laserpulse in vacuum. Phys. Lett. A 148(6–7), 338–340 (1990). DOI 10.1016/0375-9601(90)90813-4CrossRefADSGoogle Scholar
  22. [22]
    Bulanov, S.V., Kirsanov, V.I., Sakharov, A.S.: Excitation of ultrarelativisticplasma waves by pulse of electromagnetic radiation. JETP Lett. 50(4), 198(1991)ADSGoogle Scholar
  23. [23]
    Bychenkov, V.Y., Rozmus, W., Maksimchuk, A., et al.: Fast ignitor conceptwith light ions. Plasma Phys. Rep. 27(12), 1017–1020 (2001). DOI 10.1134/1.1426135CrossRefADSGoogle Scholar
  24. [24]
    Bystrov, A.M., Vvedenskii, N.V., Gildenburg, V.B.: Generation of terahertzradiation upon the optical breakdown of a gas. JETP Lett. 82(12), 753–757(2005)CrossRefADSGoogle Scholar
  25. [25]
    Carr, G.L., Martin, M.C., McKinney, W.R., et al.: High-power terahertz radiationfrom relativistic electrons. Nature 420(6912), 153–156 (2002). DOI 10.1038/nature01175CrossRefADSGoogle Scholar
  26. [26]
    Carr, G.L., Martin, M.C., McKinney, W.R., et al.: Very high power THz radiationat Jefferson Lab. Phys. Med. Biol. 47(21), 3761–3764 (2002). DOI 10.1088/0031-9155/47/21/313CrossRefGoogle Scholar
  27. [27]
    Cavailler, C.: Inertial fusion with the LMJ. Plasma Phys. Control. Fusion 47(12B), B389–B403 (2005). DOI 10.1088/0741-3335/47/12B/S28CrossRefGoogle Scholar
  28. [28]
    Chen, F.F.: Introduction to Plasma Physics and Controlled Fusion, Vol. 1, 2nd edn. Springer, New York (1984)Google Scholar
  29. [29]
    Clark, E.L., Krushelnick, K., Davies, J.R., et al.: Measurementsof energetic proton transport through magnetized plasma fromintense laser interactions with solids.Phys. Rev. Lett. 84(4), 670–673 (2000). DOI 10.1103/PhysRevLett.84.670. URL Google Scholar
  30. [30]
    Clark, T.R., Milchberg, H.M.: Optical mode structure of the plasma waveguide. Phys. Rev. E 61(2), 1954–1965 (2000). DOI 10.1103/PhysRevE.61.1954. URL 177Google Scholar
  31. [31]
    Courtois, C., Couairon, A., Cros, B., et al.: Propagation of intense ultrashortlaser pulses in a plasma filled capillary tube: Simulations and experiments. Phys. Plasmas 8(7), 3445–3456 (2001). DOI 10.1063/1.1378327CrossRefADSGoogle Scholar
  32. [32]
    Cros, B., Courtois, C., Malka, G., et al.: Excitation of accelerating wakefieldsin inhomogeneous plasmas. IEEE Trans. Plasma Sci. 28(4),1071–1077(2000). DOI 10.1109/27.893291CrossRefADSGoogle Scholar
  33. [33]
    Cuneo, M.E., Vesey, R.A., Bennett, G.R., et al.: Progress in symmetric ICFcapsule implosions and wire-array Z-pinch source physics for double-pinchdrivenhohlraums. Plasma Phys. Control. Fusion 48(2), R1–R35 (2006). DOI 10.1088/0741-3335/48/2/R01CrossRefADSGoogle Scholar
  34. [34]
    Decker, C.D., Mori, W.B., Tzeng, K.C., Katsouleas, T.C.: Modeling singlefrequencylaser-plasma acceleration using particle-in-cell simulations: thephysics of beam breakup. IEEE Trans. Plasma Sci. 24(2), 379–392 (1996).DOI 10.1109/27.510002CrossRefADSGoogle Scholar
  35. [35]
  36. [36]
  37. [37]
    Ditmire, T., Springate, E., Tisch, J.W., et al.: Explosion of atomic clustersheated by high-intensity femtosecond laser pulses. Phys. Rev.A 57(1), 369–382 (1998). DOI 10.1103/PhysRevA.57.369. URL Google Scholar
  38. [38]
    Ditmire, T., Tisch, J.W.G., Springate, E., et al.: High-energy ions produced inexplosions of superheated atomic clusters. Nature 386(6620), 54–56 (1997).DOI 10.1038/386054a0CrossRefADSGoogle Scholar
  39. [39]
    Ditmire, T., Zweiback, J., Yanovsky, V.P., et al.: Nuclear fusion from explosionsof femtosecond laser-heated deuterium clusters. Nature 398(6727), 489–492 (1999). DOI 10.1038/19037CrossRefADSGoogle Scholar
  40. [40]
    Ditmire, T., Zweiback, J., Yanovsky, V.P., et al.: Nuclear fusion in gases ofdeuterium clusters heated with a femtosecond laser. Phys. Plasmas 7(5), 1993–1998 (2000). DOI 10.1063/1.874020CrossRefADSGoogle Scholar
  41. [41]
    Dorranian, D., Starodubtsev, M., Kawakami, H., et al.: Radiation from highintensityultrashort-laser-pulse and gas-jet magnetized plasma interaction.Phys. Rev. E 68(2), 026409 (2003). DOI 10.1103/PhysRevE.68.026409.URL
  42. [42]
    Douglas, D.R., Jordan, K.C., Merminga, L., et al.: Experimental investigationof multibunch, multipass beam breakup in the Jefferson Laboratoryfree electron laser upgrade driver. Phys. Rev. ST Accel. Beams 9(6), 064403 (2006). DOI 10.1103/PhysRevSTAB.9.064403. URL Google Scholar
  43. [43]
    Durfee III, C.G., Milchberg, H.M.: Light pipe for high intensitylaser pulses.Phys. Rev. Lett. 71(15), 2409–2412 (1993). URL
  44. [44]
    Efremov, V.P., Pikuz Jr., S.A., Faenov, A.Y., et al.: Study of the energy releaseregion of a heavy-ion flux in nanomaterials by X-ray spectroscopy ofmulticharged ions. JETP Lett. 81(8), 378 (2005)CrossRefADSGoogle Scholar
  45. [45]
    Eloy, M., Azambuja, R., Mendonca, J.T., Bingham, R.: Interaction of ultrashorthigh-intensity laser pulses with atomic clusters. Phys. Plasmas 8(3), 1084–1086 (2001). DOI 10.1063/1.1345709CrossRefADSGoogle Scholar
  46. [46]
    Esarey, E., Sprangle, P., Krall, J., Ting, A.: Overview of plasma-based acceleratorconcepts. IEEE Trans. Plasma Sci. 24(2), 252–288 (1996). DOI 10.1109/27.509991CrossRefADSGoogle Scholar
  47. [47]
    Esirkepov, T., Borghesi, M., Bulanov, S.V., et al.: Highly efficientrelativistic-ion generation in the laser-piston regime. Phys. Rev. Lett.92(17), 175003 (2004). DOI 10.1103/PhysRevLett.92.175003. URL Google Scholar
  48. [48]
    Esirkepov, T., Yamagiwa, M., Tajima, T.: Laser ion-acceleration scalinglaws seen in multiparametric particle-in-cell simulations. Phys. Rev. Lett.96(10), 105001 (2006). DOI 10.1103/PhysRevLett.96.105001. URL Google Scholar
  49. [49]
    Esirkepov, T.Z., Bulanov, S.V., Nishihara, K., et al.: Proposed double-layertarget for the generation of high-quality laser-accelerated ion beams. Phys.Rev. Lett. 89(17), 175003 (2002). DOI 10.1103/PhysRevLett.89.175003.URL Google Scholar
  50. [50]
    Faure, J., Glinec, Y., Pukhov, A., et al.: A laserplasma accelerator producingmonoenergetic electron beams. Nature 431(7008), 541–544 (2004). DOI 10.1038/nature02963CrossRefADSGoogle Scholar
  51. [51]
    Fortov, V.E. (ed.): Entsiklopediya nizkotemperaturnoi plazmy (Encyclopediaof Low-Temperature Plasma). Nauka, Moscow (2000)Google Scholar
  52. [52]
    Fortov, V.E.: Intense Shock Waves and Extreme States of Matter. Bukos,Moscow (2005)Google Scholar
  53. [53]
    Fortov, V.E., Hoffmann, D.H.H., Sharkov, B.Y.: Intense ion beamsfor generating extreme states of matter. Phys. Usp. 51(2), 109(2008). DOI 10.1070/PU2008v051n02ABEH006420. URL
  54. [54]
    Fortov, V.E., Ivlev, A.V., Khrapak, S.A., et al.: Complex (dusty) plasma: Currentstatus, open issues, perspectives. Phys. Rep. 421(1), 1–103 (2005). DOI 10.1016/j.physrep.2005.08.007CrossRefMathSciNetADSGoogle Scholar
  55. [55]
    Fourkal, E., Li, J.S., Xiong, W., et al.:Intensity modulated radiation therapyusing laser-accelerated protons: a Monte Carlo dosimetric study. Phys. Med.Biol. 48(24), 3977–4000 (2003). DOI 10.1088/0031-9155/48/24/001CrossRefGoogle Scholar
  56. [56]
    Fourkal, E., Shahine, B., Ding, M., et al.: Particle in cell simulationof laser-accelerated proton beams for radiation therapy. Med.Phys. 29(12), 2788–2798 (2002). DOI 10.1118/1.1521122. URL Google Scholar
  57. [57]
    Frolov, A.A.: Excitation of surface waves at a plasma boundary by a shortlaser pulse. Plasma Phys. Rep. 33(3), 179–188 (2007). DOI 10.1134/S1063780X07030026CrossRefADSGoogle Scholar
  58. [58]
    Geddes, C.G.R., T´oth, C., van Tilborg, J., et al.: High-quality electron beamsfrom a laser wakefield accelerator using plasma-channel guiding. Nature431(7008), 538–541 (2004). DOI 10.1038/nature02900References 179CrossRefADSGoogle Scholar
  59. [59]
    Giorla, J., Bastian, J., Bayer, C., et al.: Target design for ignition experimentson the laser M´egajoule facility. Plasma Phys. Control. Fusion 48(12B), B75–B82 (2006). DOI 10.1088/0741-3335/48/12B/S0CrossRefGoogle Scholar
  60. [60]
    Golubev, S.V., Suvorov, E.V., Shalashov, A.G.: On the possibility of terahertzwave generation upon dense gas optical breakdown. JETP Lett. 79(8), 361–364 (2004)CrossRefADSGoogle Scholar
  61. [61]
    Gorbunov, L.M., Frolov, A.A.: Emission of low-frequency electromagneticwaves by a short laser pulse in stratified rarefied plasma. JETP 83(5), 967–973 (1996)ADSGoogle Scholar
  62. [62]
    Gorbunov, L.M., Frolov, A.A.: Emission of low-frequency electromagneticwaves by a short laser pulse propagating in a plasma with density fluctuations. Plasma Phys. Rep. 26(8), 646–656 (2000). DOI 10.1134/1.1306994CrossRefADSGoogle Scholar
  63. [63]
    Gorbunov, L.M., Frolov, A.A.: Electromagnetic radiation at twice the plasmafrequency emitted from the region of interaction of two short laser pulses ina rarefied plasma. JETP 98(3), 527–537 (2004). DOI 10.1134/1.1705705CrossRefADSGoogle Scholar
  64. [64]
    Gorbunov, L.M., Frolov, A.A.: Low-frequency transition radiation from ashort laser pulse at the plasma boundary. JETP 102(6), 894–901 (2006).DOI 10.1134/S1063776106060033CrossRefADSGoogle Scholar
  65. [65]
    Gorbunov, L.M., Frolov, A.A.: On the theory of Cherenkov emission from ashort laser pulse in a magnetized plasma. Plasma Phys. Rep. 32(6), 500–513(2006). DOI 10.1134/S1063780X06060079CrossRefADSGoogle Scholar
  66. [66]
    Gorbunov, L.M., Frolov, A.A.: Transition radiation generated by a short laserpulse at a plasma–vacuum interface. Plasma Phys. Rep. 32(10), 850–865(2006). DOI 10.1134/S1063780X06100059CrossRefADSGoogle Scholar
  67. [67]
    Gorbunov, L.M., Kalmykov, S.Y., Mora, P.: Laser wakefield acceleration bypetawatt ultrashort laser pulses. Phys. Plasmas 12(3), 033101 (2005). DOI 10.1063/1.1852469CrossRefADSGoogle Scholar
  68. [68]
    Gorbunov, L.M., Kirsanov, V.I.: The excitation of plasma waves by an electromagneticwave packet. JETP 93, 509 (1987). (In Russian)Google Scholar
  69. [69]
    Gordienko, S., Pukhov, A.: Scalings for ultrarelativistic laser plasmas andquasimonoenergetic electrons. Phys. Plasmas 12(4), 043109 (2005). DOI 10.1063/1.1884126CrossRefADSGoogle Scholar
  70. [70]
    Hammel, B.A., National Ignition Campaign Team: The NIF ignition program:progress and planning. Plasma Phys. Control. Fusion 48(12B), B497–B506 (2006). DOI 10.1088/0741-3335/48/12B/S47CrossRefGoogle Scholar
  71. [71]
    Hamster, H., Sullivan, A., Gordon, S., et al.: Subpicosecond,electromagnetic pulses from intense laser-plasma interaction. Phys. Rev. Lett. 71(17), 2725–2728 (1993). URL Google Scholar
  72. [72]
    Hegelich, B.M., Albright, B.J., Cobble, J., et al.: Laser acceleration of quasimonoenergeticMeV ion beams. Nature 439, 441–444 (2006). DOI 10.1038/nature04400CrossRefADSGoogle Scholar
  73. [73]
    Hoffmann, D.H.H., Fortov, V.E., Lomonosov, I.V., et al.: Unique capabilitiesof an intense heavy ion beam as a tool for equation-of-state studies. Phys.Plasmas 9(9), 3651–3654 (2002). DOI 10.1063/1.1498260CrossRefADSGoogle Scholar
  74. [74]
    Hogan, W.J. (ed.): Energy from Inertial Fusion. IAEA, Vienna, Austria(1995)Google Scholar
  75. [75]
    Hooker, S.M., Spence, D.J., Smith, R.A.: Guiding of high-intensity picosecondlaser pulses in a discharge-ablated capillary waveguide.J. Opt.Soc. Am. B 17(1), 90–98 (2000). DOI 10.1364/JOSAB.17.000090. URL Google Scholar
  76. [76]
    Joshi, C.: Plasma accelerators. Sci. Am. 294(2), 40–47 (2006)CrossRefGoogle Scholar
  77. [77]
    Kaplan, A.E., Dubetsky, B.Y., Shkolnikov, P.L.: Shock shells inCoulomb explosions of nanoclusters.Phys. Rev. Lett. 91(14), 143401 (2003). DOI 10.1103/PhysRevLett.91.143401. URL Google Scholar
  78. [78]
    Khazanov, E.A., Sergeev, A.M.: Petawatt laser based on optical parametricamplifiers: Their state and prospects. Phys. Usp. 51(9), 969 (2008). DOI 10.1070/PU2008v051n09ABEH006612. URL Google Scholar
  79. [79]
    Kirzhnits, D.A.: Extremal states of matter (ultrahigh pressuresand temperatures). Sov. Phys. – Usp. 14(4), 512–523(1972). DOI 10.1070/PU1972v014n04ABEH004734. URL
  80. [80]
    Kishimoto, Y., Masaki, T., Tajima, T.: High energy ions and nuclear fusion inlaser-cluster interaction. Phys. Plasmas 9(2), 589–601 (2002). DOI 10.1063/1.1418433CrossRefADSGoogle Scholar
  81. [81]
    Kodama, R., Norreys, P.A., Mima, K., et al.: Fast heating of ultrahigh-densityplasma as a step towards laser fusion ignition. Nature 412(6849), 798–802(2001). DOI 10.1038/35090525CrossRefADSGoogle Scholar
  82. [82]
    Konyukhov, A.V., Likhachev, A.P., Oparin, A.M., et al.: Numerical modelingof shock-wave instability in thermodynamically nonideal media. JETP 98(4), 811–819 (2004). DOI 10.1134/1.1757680CrossRefADSGoogle Scholar
  83. [83]
    Krall, J., Ting, A., Esarey, E., Sprangle, P.: Enhanced accelerationin a self-modulated-laser wake-field accelerator. Phys. Rev. E48(3), 2157–2161 (1993). DOI 10.1103/PhysRevE.48.2157. URL Google Scholar
  84. [84]
    Kruer, W.L.: The Physics of Laser Plasma Interactions. Addison-Wesley,Reading, MA (1988)Google Scholar
  85. [85]
    Last, I., Schek, I., Jortner, J.: Energetics and dynamics ofCoulomb explosion of highly charged clusters. J. Chem. Phys.107(17), 6685–6692 (1997). DOI 10.1063/1.474911. URL Google Scholar
  86. [86]
    Leemans, W.P., Geddes, C.G.R., Faure, J., et al.: Observation ofterahertz emission from a laser-plasma accelerated electron bunchcrossing a plasma-vacuum boundary.Phys. Rev. Lett. 91(7), 074802 (2003). DOI 10.1103/PhysRevLett.91.074802. URL Google Scholar
  87. [87]
    Leemans, W.P., Nagler, B., Gonsalves, A.J., et al.: GeV electron beams froma centimetre-scale accelerator. Nat. Phys. 2(10), 696–699 (2006). DOI 10.1038/nphys418CrossRefGoogle Scholar
  88. [88]
    Leemans,W.P., van Tilborg, J., Faure, J., et al.: Terahertz radiation from laseraccelerated electron bunches. Phys. Plasmas 11(5), 2899–2906 (2004). DOI 10.1063/1.1652834CrossRefADSGoogle Scholar
  89. [89]
    Lifschitz, A.F., Faure, J., Malka, V., Mora, P.: GeV wakefield accelerationof low energy electron bunches using petawatt lasers. Phys. Plasmas 12(9), 093104 (2005). DOI 10.1063/1.2010347CrossRefADSGoogle Scholar
  90. [90]
    Lindl, J.D.: Inertial Confinement Fusion. Springer, New York (1998)Google Scholar
  91. [91]
    Loborev, V.M., Pertsev, V.V., Sudakov, V.E., et al. (eds.): Fizika jadernogovzryva (The Physics of Nuclear Explosions], vol. 1. FizMatLit, Moscow(2009)Google Scholar
  92. [92]
    Maksimchuk, A., Flippo, K., Krause, H., et al.: Plasma phase transition indense hydrogen and electron–hole plasmas. Plasma Phys. Rep. 30(6), 473–495 (2004). DOI 10.1134/1.1768582CrossRefADSGoogle Scholar
  93. [93]
    Maksimchuk, A., Gu, S., Flippo, K., et al.: Forward ion accelerationin thin films driven by a high-intensity laser. Phys. Rev. Lett.84(18), 4108–4111 (2000). DOI 10.1103/PhysRevLett.84.4108. URL Google Scholar
  94. [94]
    Mesyats, G.A.: Impul’snaya energetika i elektronika (Pulse Power and Electronics).Nauka, Moscow (2004)Google Scholar
  95. [95]
    Mesyats, G.A., Yalandin, M.I.: High-power picosecond electronics. Phys.Usp. 48(3), 211 (2005). DOI 10.1070/PU2005v048n03ABEH002113. URL
  96. [96]
    Mima, K., Fast Ignition Research Group: Present status and future prospectsof laser fusion and related high energy density plasma research. AIPConf. Proc. 740(1), 387–397 (2004). DOI 10.1063/1.1843522. URL
  97. [97]
    Mintsev, V., Gryaznov, V., Kulish, M., et al.: Stopping power of proton beamin a weakly non-ideal xenon plasma. Contrib. Plasma Phys. 39(1-2), 45–48(1999). DOI 10.1002/ctpp.2150390111CrossRefGoogle Scholar
  98. [98]
    Mori, W.B., Decker, C.D., Hinkel, D.E., Katsouleas, T.:Raman forward scattering of short-pulse high-intensitylasers.Phys. Rev. Lett. 72(10), 1482–1485 (1994). URL Google Scholar
  99. [99]
    Moses, E.I., Bonanno, R.E., Haynam, C.A., et al.: The National Ignition Facility:path to ignition in the laboratory. Eur. Phys. J. D 44(2), 215–218(2006). DOI 10.1140/epjd/e2006-00106-3CrossRefADSGoogle Scholar
  100. [100]
    Mourou, G.A., Tajima, T., Bulanov, S.V.: Optics in the relativistic regime. Rev. Mod. Phys. 78(2), 1804–1816 (2006). DOI 10.1103/RevModPhys.78.309. URL Google Scholar
  101. [101]
    National Research Council:Frontiers in High Energy Density Physics. NationalAcademies Press, Washington, DC (2003)182 6 Technical Applications of the Physics of High Energy DensitiesGoogle Scholar
  102. [102]
    Nishihara, K., Amitani, H., Murakami, M., et al.: High energy ions generatedby laser driven Coulomb explosion of cluster. Nucl. Instrum. Meth. Phys.Res. A 464(1-3), 98–102 (2001). DOI 10.1016/S0168-9002(01)00014-6CrossRefADSGoogle Scholar
  103. [103]
    Okihara, S., Esirkepov, T.Z., Nagai, K., et al.: Ion generation in a low-densityplastic foam by interaction with intense femtosecond laser pulses. Phys.Rev. E 69(2), 026401 (2004). DOI 10.1103/PhysRevE.69.026401. URL Google Scholar
  104. [104]
    Pukhov, A.: Strong field interaction of laser radiation. Rep. Prog. Phys. 66(1), 47–101 (2003). DOI 10.1088/0034-4885/66/1/202CrossRefADSGoogle Scholar
  105. [105]
    Pukhov, A., Meyer-ter-Vehn, J.: Laser wake field acceleration:the highlynon-linear broken-wave regime. Appl. Phys. B 74(4–5), 355–361 (2002).DOI 10.1007/s003400200795CrossRefADSGoogle Scholar
  106. [106]
    Quintenz, J., Sandia’s Pulsed Power Team: Pulsed power team. In:Proc. 13thInt. Conf. on High Power Particle Beams. Nagaoka, Japan (2000)Google Scholar
  107. [107]
    Rosmej, O.N., Blazevic, A., Korostiy, S., et al.: Charge state and stoppingdynamics of fast heavy ions in dense matter. Phys. Rev. A 72(5), 052901 (2005). DOI 10.1103/PhysRevA.72.052901. URL Google Scholar
  108. [108]
    Roth, M., Cowan, T.E., Key, M.H., et al.: Fast ignition by intense laseracceleratedproton beams.Phys. Rev. Lett. 86(3), 436–439 (2001). DOI 10.1103/PhysRevLett.86.436CrossRefADSGoogle Scholar
  109. [109]
    Schatz, T., Schramm, U., Habs, D.: Crystalline ion beams. Nature 412(6848), 717–720 (2001). DOI 10.1038/35089045CrossRefADSGoogle Scholar
  110. [110]
    Schramm, U., Schatz, T., Bussmann, M., Habs, D.: Cooling and heating ofcrystalline ion beams. J. Phys. B 36(3), 561–571 (2003). DOI 10.1088/0953-4075/36/3/314CrossRefADSGoogle Scholar
  111. [111]
    Schroeder, C.B., Esarey, E., van Tilborg, J., Leemans, W.P.: Theory of coherenttransition radiation generated at a plasma-vacuum interface. Phys.Rev. E 69(1), 016501 (2004). DOI 10.1103/PhysRevE.69.016501. URL
  112. [112]
    Shao, Y.L., Ditmire, T., Tisch, J.W.G., et al.: Multi-keV electron generationin the interaction of intense laser pulses with Xe clusters. Phys. Rev.Lett. 77(16), 3343–3346 (1996). DOI 10.1103/PhysRevLett.77.3343. URL Google Scholar
  113. [113]
    Sharkov, B.Y. (ed.): Yadernyi sintez s inertsionnym uderzhaniem (InertialConfinement Nuclear Fusion). Fizmatlit, Moscow (2005)Google Scholar
  114. [114]
    Sheng, Z.M., Mima, K., Zhang, J.: Powerful terahertz emission from laserwake fields excited in inhomogeneous plasmas. Phys. Plasmas 12(12), 123103 (2005). DOI 10.1063/1.2136107CrossRefADSGoogle Scholar
  115. [115]
    Sheng, Z.M., Mima, K., Zhang, J., Sanuki, H.: Emission of electromagneticpulses from laser wakefields through linear mode conversion. Phys. Rev.Lett. 94(9), 095003 (2005). DOI 10.1103/PhysRevLett.94.095003. URL Google Scholar
  116. [116]
    Sheng, Z.M., Wu, H.C., Li, K., Zhang, J.: Terahertz radiation from thevacuum-plasma interface driven by ultrashort intense laser pulses. Phys.References 183Rev. E 69(2), 025401 (2004). DOI 10.1103/PhysRevE.69.025401. URL
  117. [117]
    Shvets, G.,Wurtele, J.S., Chiou, T.C., Katsouleas, T.C.: Excitation of acceleratingwakefields in inhomogeneous plasmas.IEEE Trans.Plasma Sci. 24(2), 351–362 (1996). DOI 10.1109/27.509999CrossRefADSGoogle Scholar
  118. [118]
    Spence, D.J., Butler, A., Hooker, S.M.: Gas-filled capillary dischargewaveguides. J. Opt. Soc. Am. B 20(1), 138–151 (2003). URL Google Scholar
  119. [119]
    Spence, N., Katsouleas, T., Muggli, P., et al.: Simulations of Cerenkov wakeradiation sources. Phys. Plasmas 8(11), 4995–5005 (2001). DOI 10.1063/1.1408625CrossRefADSGoogle Scholar
  120. [120]
    Spielman, R.B., Deeney, C., Chandler, G.A., et al.: Tungsten wire-array Zpinchexperiments at 200 TW and 2 MJ. Phys. Plasmas 5(5), 2105–2111(1998). DOI 10.1063/1.872881CrossRefADSGoogle Scholar
  121. [121]
    Sprangle, P., Esarey, E., Krall, J., Joyce, G.: Propagation and guiding of intenselaser pulses in plasmas.Phys. Rev. Lett. 69(15), 2200–2203 (1992).URL Google Scholar
  122. [122]
    Sprangle, P., Esarey, E., Ting, A., Joyce, G.: Laser wakefield accelerationand relativistic optical guiding. Appl. Phys. Lett.53(22), 2146–2148 (1988). DOI 10.1063/1.100300. URL Google Scholar
  123. [123]
    Sprangle, P., Penano, J.R., Hafizi, B., Kapetanakos, C.A.: Ultrashort laserpulses and electromagnetic pulse generation in air and on dielectric surfaces. Phys. Rev. E 69(6), 066415 (2004). DOI 10.1103/PhysRevE.69.066415.URL
  124. [124]
    Tabak, M., Hammer, J., Glinsky, M.E., et al.: Ignition and high gain withultrapowerful lasers. Phys. Plasmas 1(5), 1626–1634 (1994). DOI 10.1063/1.870664CrossRefADSGoogle Scholar
  125. [125]
    Tahir, N.A., Deutsch, C., Fortov, V.E., et al.: Proposal for the studyof thermophysical properties of high-energy-density matter using currentand future heavy-ion accelerator facilities at GSI Darmstadt. Phys. Rev.Lett. 95(3), 035001 (2005). DOI 10.1103/PhysRevLett.95.035001. URL
  126. [126]
    Tahir, N.A., Deutsch, C., Fortov, V.E., et al.: Studies of strongly coupled plasmasusing intense heavy ion beams at the future FAIR facility:The HEDge-HOB collaboration. Contrib. Plasma Phys. 45(3–4), 229–235 (2005). DOI 10.1002/ctpp.200510025CrossRefGoogle Scholar
  127. [127]
    Tahir, N.A., Kain, V., Schmidt, R., et al.: The CERN Large Hadron Collideras a tool to study high-energy density matter. Phys. Rev. Lett.94(13), 135004 (2005). DOI 10.1103/PhysRevLett.94.135004. URL
  128. [128]
    Tajima, T.: Summary ofWorking Group 7 on “Exotic acceleration schemes”.AIP Conf. Proc. 569(1), 77–81 (2001). DOI 10.1063/1.1384337. URL
  129. [129]
    Tajima, T., Dawson, J.M.: Laser electron accelerator.Phys. Rev. Lett. 43(4), 267–270 (1979). URL{PRL}/v43/p267 Google Scholar
  130. [130]
    van Tilborg, J., Schroeder, C.B., Esarey, E., Leemans, W.P.: Pulse shapeand spectrum of coherent diffraction-limited transition radiation from electronbeams. Laser Part. Beams 22, 415–422 (2004). DOI 10.1017/S0263034604040078ADSGoogle Scholar
  131. [131]
    van Tilborg, J., Schroeder, C.B., Filip, C.V., et al.: Temporalcharacterization of femtosecond laser-plasma-accelerated electronbunches using terahertz radiation.Phys. Rev. Lett. 96(1), 014801 (2006). DOI 10.1103/PhysRevLett.96.014801. URL Google Scholar
  132. [132]
    Tzortzakis, S., Mechain, G., Patalano, G., et al.: Coherent subterahertzradiation from femtosecond infrared filaments in air. Opt.Lett. 27(21), 1944–1946 (2002). DOI 10.1364/OL.27.001944. URL Google Scholar
  133. [133]
    Wang, S., Clayton, C.E., Blue, B.E., et al.: X-Ray emission frombetatron motion in a plasma wiggler.Phys. Rev. Lett. 88(13), 135004 (2002). DOI 10.1103/PhysRevLett.88.135004. URL Google Scholar
  134. [134]
    XFEL Project Group at DESY: The European X-ray laser project XFEL.URL
  135. [135]
    Yampolsky, N.A., Fraiman, G.M.: Conversion of laser radiation to terahertzfrequency waves in plasma. Phys. Plasmas 13(11), 113108 (2006). DOI 10.1063/1.2372462CrossRefADSGoogle Scholar
  136. [136]
    Yoshii, J., Lai, C.H., Katsouleas, T., et al.: Radiation fromCerenkov wakes in a magnetized plasma.Phys. Rev. Lett. 79(21), 4194–4197 (1997). DOI 10.1103/PhysRevLett.79.4194. URL Google Scholar
  137. [137]
    Yugami, N., Higashiguchi, T., Gao, H., et al.: Experimental observationof radiation from Cherenkov wakes in a magnetized plasma. Phys. Rev.Lett. 89(6), 065003 (2002). DOI 10.1103/PhysRevLett.89.065003. URL Google Scholar
  138. [138]
    Zigler, A., Ehrlich, Y., Cohen, C., et al.: Optical guidingof high-intensity laser pulses in a long plasma channelformed by a slow capillary discharge. J. Opt. Soc. Am. B13(1), 68–71 (1996). DOI 10.1364/JOSAB.13.000068. URL Google Scholar
  139. [139]
    Zweiback, J., Cowan, T.E., Smith, R.A., et al.: Characterization of fusionburn time in exploding deuterium cluster plasmas. Phys. Rev. Lett. 85(17), 3640–3643 (2000). DOI 10.1103/PhysRevLett.85.3640. URL Google Scholar
  140. [140]
    Zweiback, J., Ditmire, T.: Femtosecond laser energy deposition in stronglyabsorbing cluster gases diagnosed by blast wave trajectory analysis. Phys.Plasmas 8(10),4545–4550 (2001). DOI 10.1063/1.1394778CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Russian Academy of Sciences, Joint Institute for High TemperaturesMoscowRussia

Personalised recommendations