Advertisement

Relativistic Charged Particle Beams

Chapter
  • 1.3k Downloads
Part of the The Frontiers Collection book series (FRONTCOLL)

Abstract

The highest energy densities attainable under terrestrial conditions are generated in relativistic heavy-ion collisions. Accelerators [23] required for this purpose operate in several laboratories throughout the world and are well known as the principal experimental tool in nuclear physics, elementary particle physics, quantum chromodynamics, and superdense nuclear matter physics research [56, 29, 54, 65, 41], i.e., in the areas which have always been at the forefront of the natural sciences. There exists a demand for constant advancement into the domain of higher energies and higher phase densities of accelerated particle beams.

Keywords

Large Hadron Collider Nuclear Matter Gluon Plasma Baryon Density Compressed Baryon Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Adams, J., Adler, C., Aggarwal, M.M., et al.: Azimuthal anisotropy at the relativistic heavy ion collider: the first and fourth harmonics. Phys. Rev. Lett. 92(6), 062301 (2004). DOI 10.1103/PhysRevLett.92.062301CrossRefADSGoogle Scholar
  2. [2]
    Adams, J., Adler, C., Aggarwal, M.M., et al.: Particle-type dependence of azimuthal anisotropy and nuclear modification of particle production in Au+Au collisions at \(\sqrt{s_{NN}}\) = 200 GeV. Phys. Rev. Lett. 92(5), 052302 (2004). DOI 10.1103/PhysRevLett.92.052302CrossRefADSGoogle Scholar
  3. [3]
    Adler, C., Ahammed, Z., Allgower, C., et al.: Disappearance of back-to-back high-pT hadron correlations in central Au+Au collisions at \(\sqrt{s_{NN}}\)= 200 GeV. Phys. Rev. Lett. 90(8), 082302 (2003). DOI 10.1103/PhysRevLett.90.082302CrossRefADSGoogle Scholar
  4. [4]
    Adler, S.S., Afanasiev, S., Aidala, C., et al.: Elliptic flow of identified hadrons in Au+Au collisions at \(\sqrt{s_{NN}}=200\) GeV. Phys. Rev. Lett. 91(18), 182301 (2003). DOI 10.1103/PhysRevLett.91.182301CrossRefADSGoogle Scholar
  5. [5]
    Alt, C., Anticic, T., Baatar, B., et al.: Directed and elliptic flow of charged pions and protons in Pb+Pb collisions at 4A and 158A GeV. Phys. Rev. C 68(3), 034903 (2003). DOI 10.1103/PhysRevC.68.034903. URL http://link.aps.org/doi/10.1103/PhysRevC.68.034903
  6. [6]
    Anisimov, S.I., Prokhorov, A.M., Fortov, V.E.: Application of high-power lasers to study matter at ultrahigh pressures. Sov. Phys. – Usp. 27(3), 181–205 (1984).DOI 10.1070/PU1984v027n03ABEH004036. URL http://stacks.iop.org/0038-5670/27/181
  7. [7]
    Atzeni, S., Meyer-ter-Vehn, J.: The Physics of Inertial Fusion. Oxford University Press, Oxford (2004)CrossRefGoogle Scholar
  8. [8]
    Baldin, A.M., Malakhov, A.I., Sissakian, A.N.: Some problems of relativistic nuclear physics and multiple particle production [in Russian]. Phys. Elementary Part. At. Nucl. 32(7), 6 (2001)Google Scholar
  9. [9]
    Baumung, K., Bluhm, H.J., Goel, B., et al.: Shock-wave physics experiments with high-power proton beams. Laser Part. Beams 14(2), 181 (1996)CrossRefADSGoogle Scholar
  10. [10]
    Baym, G.: Matter under extreme conditions. Presented at the ExtreMe Matter Institute EMMI Kick-Off Meeting - Symposium, July 16–17, 2008, GSI, Darmstadt, GermanyGoogle Scholar
  11. [11]
    Baym, G., Chin, S.A.: Can a neutron star be a giant MIT bag? Phys. Lett. B 62(2), 241–244 (1976). DOI 10.1016/0370-2693(76)90517-7CrossRefADSGoogle Scholar
  12. [12]
    Chapline, G., Nauenberg, M.: Asymptotic freedom and the baryon–quark phase transition. Phys. Rev. D 16(2), 450–456 (1977). DOI 10.1103/PhysRevD.16.450CrossRefADSGoogle Scholar
  13. [13]
    Collins, J.C., Perry, M.J.: Superdense matter: Neutrons or asymptotically free quarks? Phys. Rev. Lett. 34(21), 1353–1356 (1975). DOI 10.1103/PhysRevLett.34.1353CrossRefADSGoogle Scholar
  14. [14]
    Csikor, F., Egri, G.I., Fodor, Z., et al.: The QCD equation of state at finite T μ on the lattice. Prog. Theor. Phys. Suppl. 153, 93–105 (2004)CrossRefADSGoogle Scholar
  15. [15]
    Cuneo, M.E., Adams, R.G., Bailey, J.E., et al.: Generating high-brightness light ion beams for inertial fusion energy (IFP/14) (1998).URL http://www.iaea.org/programmes/ripc/physics/html/iaeacn69.htm
  16. [16]
    Cuneo, M.E., Vesey, R.A., Bennett, G.R., et al.: Progress in symmetric ICF capsule implosions and wire-array Z-pinch source physics for double-pinch-driven hohlraums. Plasma Phys. Control. Fusion 48(2), R1–R35 (2006). DOI 10.1088/0741-3335/48/2/R01CrossRefADSGoogle Scholar
  17. [17]
    D. Blaschke et al. (Eds): Searching for a QCD mixed phase at the Nuclotron-based Ion Collider fAcility (NICA white paper) (2009).URL http://theor.jinr.ru/twiki/pub/NICA/WebHome/Wh_Paper_dk6.pdf
  18. [18]
    Efremov, V.P., Pikuz Jr., S.A., Faenov, A.Y., et al.: Study of the energy release region of a heavy-ion flux in nanomaterials by X-ray spectroscopy of multicharged ions. JETP Lett. 81(8), 378 (2005)CrossRefADSGoogle Scholar
  19. [19]
    Fodor, Z., Katz, S.D.: Critical point of QCD at finite T and μ, lattice results for physical quark masses. J. High Energy Phys. 2004(04), 050 (2004).URL http://stacks.iop.org/1126-6708/2004/i=04/a=050
  20. [20]
    Fortov, V., Iakubov, I., Khrapak, A.: Physics of Strongly Coupled Plasma. Oxford University Press, Oxford (2006)zbMATHCrossRefGoogle Scholar
  21. [21]
    Fortov, V., Rudakov, L., Ni, A.: Application of intense relativistic electron beams in high dynamic pressure thermophysics. Sov. Thermal Phys. Rev. 371, 589 (1992)Google Scholar
  22. [22]
    Fortov, V.E.: Intense shock waves and extreme states of matter. Phys. Usp. 50(4), 333 (2007). DOI 10.1070/PU2007v050n04ABEH006234. URL http://ufn.ru/en/articles/2007/4/c/
  23. [23]
    Fortov, V.E., Hoffmann, D.H.H., Sharkov, B.Y.: Intense ion beams for generating extreme states of matter. Phys. Usp. 51(2), 109 (2008). DOI 10.1070/PU2008v051n02ABEH006420. URL http://ufn.ru/en/articles/2008/2/a/ Google Scholar
  24. [24]
    Fortov, V.E., Ilkaev, R.I., Arinin, V.A., et al.: Phase transition in a strongly nonideal deuterium plasma generated by quasi-isentropical compression at megabar pressures. Phys. Rev. Lett. 99(18), 185001 (2007). DOI 10.1103/PhysRevLett.99.185001. URL http://link.aps.org/abstract/PRL/v99/e185001 Google Scholar
  25. [25]
    Fortov, V.E., Ivlev, A.V., Khrapak, S.A., et al.: Complex (dusty) plasma: current status, open issues, perspectives. Phys. Rep. 421(1), 1–103 (2005). DOI 10.1016/j.physrep.2005.08.007CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    Fortov, V.E., Khrapak, A.G., Yakubov, I.T.: Fizika neideal’noi plazmy (Physics of Nonideal Plasma). Fizmatlit, Moscow (2004)Google Scholar
  27. [27]
    Freedman, B.A., McLerran, L.D.: Fermions and gauge vector mesons at finite temperature and density. III. The ground-state energy of a relativistic quark gas. Phys. Rev. D 16(4), 1169–1185 (1977). DOI 10.1103/PhysRevD.16.1169CrossRefADSGoogle Scholar
  28. [28]
    Gezerlis, A., Carlson, J.: Strongly paired fermions: Cold atoms and neutron matter. Phys. Rev. C 77(3), 032801 (2008).DOI 10.1103/PhysRevC.77.032801. URL http://link.aps.org/abstract/PRC/v77/e032801 Google Scholar
  29. [29]
    Ginzburg, V.L.: The Physics of a Lifetime: Reflections on the Problems and Personalities of 20th Century Physics. Springer, Berlin, Heidelberg (2001)Google Scholar
  30. [30]
    Glendenning, N.K.: Compact Stars: Nuclear Physics, Particle Physics, and General Relativity, 2nd edn. Springer, New York (2000)zbMATHGoogle Scholar
  31. [31]
    Gyulassy, M.: Quark gluon plasmas: Femto cosmology with A+A @ LHC. Presented at the ExtreMe Matter Institute EMMI Kick-Off Meeting - Symposium, July 16–17, 2008, GSI, Darmstadt, GermanyGoogle Scholar
  32. [32]
    Gyulassy, M., McLerran, L.: New forms of QCD matter discovered at RHIC. Nucl. Phys. A 750(1), 30–63 (2005). DOI 10.1016/j.nuclphysa.2004.10.034CrossRefADSGoogle Scholar
  33. [33]
    Gyulassy, M., Pl“umer, M.: Jet quenching as a probe of dense matter. Nucl. Phys. A 527, 641–644 (1991). DOI 10.1016/0375-9474(91)90173-4CrossRefADSGoogle Scholar
  34. [34]
    Gyulassy, M., Pl“umer, M., Thoma, M., Wang, X.N.: High PT probes of nuclear collisions. Nucl. Phys. A 538, 37–49 (1992). DOI 10.1016/0375-9474(92)90756-ACrossRefADSGoogle Scholar
  35. [35]
    Hands, S.: The phase diagram of QCD. Contemp. Phys. 42(4), 209–225 (2001). DOI 10.1080/00107510110063843. URL http://pdfserve.informaworld.com/104165_762903897_713806686.pdf Google Scholar
  36. [36]
    Hoffmann, D.H.H., Fortov, V.E., Lomonosov, I.V., et al.: Unique capabilities of an intense heavy ion beam as a tool for equation-of-state studies. Phys. Plasmas 9(9), 3651–3654 (2002). DOI 10.1063/1.1498260CrossRefADSGoogle Scholar
  37. [37]
    Jacobs, P., Klay, J.: Jets and high p T hadrons in dense matter: recent results from STAR (2003). URL http://arxiv.org/abs/nucl-ex/0308023
  38. [38]
    Kalashnikov, O.K., Klimov, V.V.: Phase transition in the quark–gluon plasma. Phys. Lett. B 88(3-4), 328–330 (1979). DOI 10.1016/0370-2693(79)90479-9CrossRefADSGoogle Scholar
  39. [39]
    Kanel, G.I., Rasorenov, S.V., Fortov, V.E.: Shock-Wave Phenomena and the Properties of Condensed Matter. Springer, New York (2004)Google Scholar
  40. [40]
    Kapusta, J.I.: Quantum chromodynamics at high temperature. Nucl. Phys. B 88(3–4), 461–498 (1979). DOI 10.1016/0550-3213(79)90146-9CrossRefADSGoogle Scholar
  41. [41]
    Karsch, F.: Lattice QCD at high temperature and the QGP (2006). URL http://arxiv.org/abs/hep-lat/0601013
  42. [42]
    Knudson, M.D., Hanson, D.L., Bailey, J.E., et al.: Equation of state measurements in liquid deuterium to 70 GPa. Phys. Rev. Lett. 87(22), 225501 (2001). DOI 10.1103/PhysRevLett.87.225501. URL http://link.aps.org/abstract/PRL/v87/e225501 Google Scholar
  43. [43]
    Krasnikov, N.V., Matveev, V.A.: The search for new physics at the Large Hadron Collider. Phys. Usp. 47(7), 643 (2004). DOI 10.1070/PU2004v047n07ABEH001767. URL http://ufn.ru/en/articles/2004/7/a/
  44. [44]
    Kruer, W.L.: The Physics of Laser Plasma Interactions. Addison-Wesley, Reading, MA (1988)Google Scholar
  45. [45]
    Langanke, L.: A FAIR chance for nuclear astrophysics (2007). Kick-off event and symposium on the physics at FAIRGoogle Scholar
  46. [46]
    Lindl, J.D.: Inertial Confinement Fusion. Springer, New York (1998)Google Scholar
  47. [47]
    MacFarlane, J.J., Wang, P., Bailey, J., et al.: Analysis of Kα line emission from aluminum plasmas created by intense proton beams. Phys. Rev. E 47(4), 2748–2758 (1993). DOI 10.1103/PhysRevE.47.2748. URL http://link.aps.org/abstract/PRE/v47/p2748
  48. [48]
    Meshkov, I., Sidorin, A. (Eds): Design and construction of Nuclotron-based Ion Collider fAcility (NICA), conceptual design report (2008). URL http://nica.jinr.ru/files/NICA_CDR.pdf
  49. [49]
    Mesyats, G.A.: Impul’snaya energetika i elektronika (Pulse Power and Electronics). Nauka, Moscow (2004)Google Scholar
  50. [50]
    Mintsev, V., Gryaznov, V., Kulish, M., et al.: Stopping power of proton beam in a weakly non-ideal xenon plasma. Contrib. Plasma Phys. 39(1–2), 45–48 (1999). DOI 10.1002/ctpp.2150390111CrossRefADSGoogle Scholar
  51. [51]
    Mrowczynski, S., Thoma, M.H.: What do electromagnetic plasmas tell us about the quark–gluon plasma? Annu. Rev. Nucl. Part. Sci. 57(1), 61–94 (2007). DOI 10.1146/annurev.nucl.57.090506.123124. URL http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.nucl.57.090506 Google Scholar
  52. [52]
    National Research Council: Frontiers in High Energy Density Physics. National Academies Press, Washington, DC (2003)Google Scholar
  53. [53]
  54. [54]
    Novikov, I.D.: “Big Bang” echo (cosmic microwave background observations). Phys. Usp. 44(8), 817 (2001). DOI 10.1070/PU2001v044n08ABEH000983. URL http://ufn.ru/en/articles/2001/8/h/
  55. [55]
    O’Hara, K.M., Hemmer, S.L., Gehm, M.E., et al.: Observation of a strongly interacting degenerate Fermi gas of atoms. Science 298(5601), 2179–2182 (2002). DOI 10.1126/science.1079107. URL http://www.sciencemag.org/cgi/content/abstract/298/5601/2179 Google Scholar
  56. [56]
    Okun’, L.B.: Leptony i kvarki, 2nd edn. Nauka, Moscow (1990). [English Transl.: Leptons and Quarks. North-Holland, Amsterdam (1982)]Google Scholar
  57. [57]
    Ollitrault, J.Y.: Anisotropy as a signature of transverse collective flow. Phys. Rev. D 46(1), 229–245 (1992). DOI 10.1103/PhysRevD.46.229CrossRefADSGoogle Scholar
  58. [58]
    Pieranski, P.: Colloidal crystals. Contemp. Phys. 24(1), 25–73 (1983). DOI 10.1080/00107518308227471CrossRefADSGoogle Scholar
  59. [59]
    Quigg, C.: The coming revolutions in particle physics. Sci. Am. 298(2), 46 (2008)CrossRefGoogle Scholar
  60. [60]
    Quintenz, J., Sandia’s Pulsed Power Team: Pulsed power team. In: Proc. 13th Int. Conf. on High Power Particle Beams. Nagaoka, Japan (2000)Google Scholar
  61. [61]
    Randrup, J., Cleymans, J.: Exploring high-density baryonic matter: Maximum freeze-out density. In: Searching for a QCD mixed phase at the Nuclotron-based Ion Collider fAcility. (NICA White Paper), p. 16. JINR, Dubna, Russia (2009). URL http://theor.jinr.ru/twiki/pub/NICA/WebHome/Wh_Paper_dk6.pdf
  62. [62]
    Riordan, M., Zajc, W.A.: The first few microseconds. Sci. Am. 294(5), 34A–41 (2006)CrossRefGoogle Scholar
  63. [63]
    Rosmej, O.N., Blazevic, A., Korostiy, S., et al.: Charge state and stopping dynamics of fast heavy ions in dense matter. Phys. Rev. A 72(5), 052901 (2005). DOI 10.1103/PhysRevA.72.052901. URL http://link.aps.org/abstract/PRA/v72/e052901 Google Scholar
  64. [64]
    Rubakov, V.A.: Large and infinite extra dimensions. Phys. Usp. 44(9), 871 (2001). DOI 10.1070/PU2001v044n09ABEH001000. URL http://ufn.ru/en/articles/2001/9/a/
  65. [65]
    Rubakov, V.A.: Introduction to cosmology. Proc. Sci. RTN2005 (2005). URL http://pos.sissa.it/archive/conferences/019/003/RTN2005_003.pdf
  66. [66]
    Rubakov, V.A.: Hierarchies of fundamental constants (to items Nos 16, 17, and 27 from Ginzburg’s list). Phys. Usp. 50(4), 390 (2007). DOI 10.1070/PU2007v050n04ABEH006240. URL http://ufn.ru/en/articles/2007/4/i/ Google Scholar
  67. [67]
    Russel, W.B., Saville, D.A., Schowalter, W.R.: Colloidal Dispersions. Cambridge University Press, Cambridge (1989)Google Scholar
  68. [68]
    Sharkov, B.Y. (ed.): Yadernyi sintez s inertsionnym uderzhaniem (Inertial Confinement Nuclear Fusion). Fizmatlit, Moscow (2005)Google Scholar
  69. [69]
    Shuryak, E.V.: Quark–gluon plasma and hadronic production of leptons, photons and psions. Phys. Lett. B 78(1), 150–153 (1978). DOI 10.1016/0370-2693(78)90370-2CrossRefADSGoogle Scholar
  70. [70]
    Shuryak, E.V.: Quantum chromodynamics and the theory of superdense matter. Phys. Rep. 61(2), 71–158 (1980). DOI 10.1016/0370-1573(80)90105-2CrossRefMathSciNetADSGoogle Scholar
  71. [71]
    Sissakian, A., Sorin, A.S.: The QCD Phase Diagram NICA, JINR Communication. JINR, Dubna, Russia (2009)Google Scholar
  72. [72]
    Sissakian, A., et al.: The MultiPurpose Detector – MPD To Study Heavy Ion Collisions at NICA. Conceptual Design Report. JINR, Dubna, Russia (2009)Google Scholar
  73. [73]
    Sissakian, A.N.: Frame projects breakthrough to future [in Russian]. Nauka v Rossii [Science in Russia] 6, 4–11 (2008)Google Scholar
  74. [74]
    Sissakian, A.N., Sorin, A.S.: The nuclotron-based ion collider facility (NICA) at JINR: new prospects for heavy ion collisions and spin physics. J. Phys. G: Nucl. Part. Phys. 36(6), 064069 (2009). DOI 10.1088/0954-3899/36/6/064069CrossRefADSGoogle Scholar
  75. [75]
    Sissakian, A.N., Sorin, A.S., Suleymanov, M.K., et al.: Towards searching for a mixed phase of strongly interacting QCD matter at the JINR nuclotron (2006). URL http://arxiv.org/abs/nucl-ex/0601034
  76. [76]
    Sissakian, A.N., Sorin, A.S., Suleymanov, M.K., et al.: Properties of strongly interacting matter and the search for a mixed phase at the JINR nuclotron. Phys. Part. Nucl. Lett. 5(1), 8–17 (2008)Google Scholar
  77. [77]
    Sissakian, A.N., Sorin, A.S., Toneev, V.D.: QCD Matter: A Search for a Mixed Quark–Hadron Phase (2006). URL http://arxiv.org/abs/nucl-th/0608032
  78. [78]
    Sorensen, P.R.: Kaon and lambda production at intermediate PT: Insights into the hadronization of the bulk partonic matter created in Au+Au collisions at RHIC. Ph.D. thesis, University of California, Los Angeles (2003)Google Scholar
  79. [79]
    Spielman, R.B., Deeney, C., Chandler, G.A., et al.: Tungsten wire-array Z-pinch experiments at 200 TW and 2 MJ. Phys. Plasmas 5(5), 2105–2111 (1998). DOI 10.1063/1.872881CrossRefADSGoogle Scholar
  80. [80]
    Stöcker, H., Hofmann, J., Maruhn, J.A., Greiner, W.: Shock waves in nuclear matter – proof by circumstantial evidence. Prog. Part. Nucl. Phys. 4, 133–195 (1980). DOI 10.1016/0146-6410(80)90006-XCrossRefADSGoogle Scholar
  81. [81]
    Tahir, N.A., Deutsch, C., Fortov, V.E., et al.: Proposal for the study of thermophysical properties of high-energy-density matter using current and future heavy-ion accelerator facilities at GSI Darmstadt. Phys. Rev. Lett. 95(3), 035001 (2005). DOI 10.1103/PhysRevLett.95.035001. URL http://link.aps.org/abstract/PRL/v95/e035001
  82. [82]
    Tahir, N.A., Deutsch, C., Fortov, V.E., et al.: Studies of strongly coupled plasmas using intense heavy ion beams at the future FAIR facility: The HEDgeHOB collaboration. Contrib. Plasma Phys. 45(3–4), 229–235 (2005). DOI 10.1002/ctpp.200510025CrossRefADSGoogle Scholar
  83. [83]
    Vitev, I., Gyulassy, M.: High-p T tomography of d+Au and Au+Au at SPS, RHIC, and LHC. Phys. Rev. Lett. 89(25), 252301 (2002). DOI 10.1103/PhysRevLett.89.252301CrossRefADSGoogle Scholar
  84. [84]
    Voloshin, S.A., for the STAR Collaboration: Probe for the strong parity violation effects at RHIC with three particle correlations (2008). URL http://arxiv.org/abs/0806.0029
  85. [85]
    Wang, X.N., Gyulassy, M.: Gluon shadowing and jet quenching in A+A collisions at \(\sqrt{s}\) = 200A GeV. Phys. Rev. Lett. 68(10), 1480–1483 (1992). DOI 10.1103/PhysRevLett.68.1480CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Russian Academy of Sciences, Joint Institute for High TemperaturesMoscowRussia

Personalised recommendations