High-Power Lasers in High-Energy-Density Physics

Part of the The Frontiers Collection book series (FRONTCOLL)


The rapid progress of laser technology has opened up the possibility of generating ultrashort laser pulses of the nano–pico–femto1–atto–second range and of bringing (see Tables 3.2, 3.3; Fig. 3.2) the existing and projected laser complexes into the petawatt–zettawatt power range (Figs 4.1, 4.2), making it possible to span a wide range of power densities up to the highest values achievable today, q ≈ 1022– 1023  W/cm2 [70, 69, 6, 14], which will undoubtedly rise with time.


Pair Production Laser Plasma Photonuclear Reaction Laser Radiation Intensity Wake Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Anisimov, S.I., Prokhorov, A.M., Fortov, V.E.: Application of high-power lasers to study matter at ultrahigh pressures. Sov. Phys. – Usp. 27(3), 181–205 (1984). DOI 10.1070/PU1984v027n03ABEH004036. URL
  2. [2]
    Arkani-Hamed, N., Dimopoulos, S., Dvali, G.: Phenomenology, astrophysics, and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity. Phys. Rev. D 59(8), 086004 (1999). DOI 10.1103/PhysRevD.59.086004. URL
  3. [3]
    Atzeni, S., Meyer-ter-Vehn, J.: The Physics of Inertial Fusion. Oxford University Press, Oxford (2004)CrossRefGoogle Scholar
  4. [4]
    Avrorin, E.N., Simonenko, V.A., Shibarshov, L.I.: Physics research during nuclear explosions. Phys. Usp. 49(4), 432 (2006). DOI 10.1070/PU2006v049n04ABEH005958. URL
  5. [5]
    Avrorin, E.N., Vodolaga, B.K., Simonenko, V.A., Fortov, V.E.: Intense shock waves and extreme states of matter. Phys. Usp. 36(5), 337–364 (1993). DOI 10.1070/PU1993v036n05ABEH002158. URL Google Scholar
  6. [6]
    Bahk, S.W., Rousseau, P., Planchon, T.A., etal.: Generation and characterization of the highest laser intensities (1022 W/cm2). Opt. Lett. 29(24), 2837–2839 (2004). DOI 10.1364/OL.29.002837. URL
  7. [7]
    Bamber, C., Boege, S.J., Koffas, T., etal.: Studies of nonlinear QED in collisions of 46.6  GeV electrons with intense laser pulses. Phys. Rev. D 60(9), 092004 (1999). DOI 10.1103/PhysRevD.60.092004. URL Google Scholar
  8. [8]
    Beg, F.N., Bell, A.R., Dangor, A.E., etal.: A study of picosecond laser–solid interactions up to 1019 W cm-2. Phys. Plasmas 4(2), 447–457 (1997). DOI 0.1063/1.872103CrossRefADSGoogle Scholar
  9. [9]
    Belov, I.A., etal.: In: Int. conf. “X Kharitonov’s thematic scientific readings”, p. 145. RPhNZ-VNIIEPh, Sarov (2008)Google Scholar
  10. [10]
    Belyaev, V.S., Krainov, V.P., Lisitsa, V.S., Matafonov, A.P.: Generation of fast charged particles and superstrong magnetic fields in the interaction of ultrashort high-intensity laser pulses with solid targets. Phys. Usp. 51(8), 793 (2008). DOI 10.1070/PU2008v051n08ABEH006541. URL
  11. [11]
    Benuzzi-Mounaix, A., Koenig, M., Ravasio, A., etal.: Laser-driven shock waves for the study of extreme matter states. Plasma Phys. Control. Fusion 48(12B), B347–B358 (2006). DOI 10.1088/0741-3335/48/12B/S32CrossRefGoogle Scholar
  12. [12]
    Boyko, B.A., Bykov, A.I., etal.: More than 20 MG magnetic field generation in the cascade magnetocumulative MC-1 generator. In: H.J. Schneider-Muntau (ed.) Megagauss Magnetic Field Generation, Its Application to Science and Ultra-High Pulsed-Power Technology. Proc. VIIIth Int. Conf. Megagauss Magnetic Field Generation and Related Topics, p. 61. World Scientific, Singapore (2004)Google Scholar
  13. [13]
    Bula, C., McDonald, K.T., Prebys, E.J., etal.: Observation of nonlinear effects in Compton scattering. Phys. Rev. Lett. 76(17), 3116–3119 (1996). DOI 10.1103/PhysRevLett.76.3116. URL Google Scholar
  14. [14]
    Bulanov, S.V.: New epoch in the charged particle acceleration by relativistically intense laser radiation. Plasma Phys. Control. Fusion 48(12B), B29–B37 (2006). DOI 10.1088/0741-3335/48/12B/S03CrossRefGoogle Scholar
  15. [15]
    Bulanov, S.V., Inovenkov, I.N., Kirsanov, V.I., etal.: Nonlinear depletion of ultrashort and relativistically strong laser pulses in an underdense plasma. Phys. Fluids B 4(7), 1935–1942 (1992). DOI 10.1063/1.860046. URL
  16. [16]
    Bulanov, S.V., Naumova, N.M., Pegoraro, F.: Interaction of an ultrashort, relativistically strong laser pulse with an overdense plasma. Phys. Plasmas 1(3), 745–757 (1994). DOI 10.1063/1.870766CrossRefADSGoogle Scholar
  17. [17]
    Bunkenberg, J., Boles, J., Brown, D., etal.: The omega high-power phosphate-glass system: design and performance. IEEE J. Quantum Electron. 17(9), 1620–1628 (1981)CrossRefADSGoogle Scholar
  18. [18]
    Burke, D.L., Field, R.C., Horton-Smith, G., etal.: Positron production in multiphoton light-by-light scattering. Phys. Rev. Lett. 79(9), 1626–1629 (1997). DOI 10.1103/PhysRevLett.79.1626. URL Google Scholar
  19. [19]
    Checkhlov, O., Divall, E.J., Ertel, K., etal.: Development of petawatt laser amplification systems at the central laser facility. Proc. SPIE 6735(1), 67350 J (2007). DOI 10.1117/12.753222. URL J/1
  20. [20]
    Chen, P., Tajima, T.: Testing Unruh radiation with ultraintense lasers. Phys. Rev. Lett. 83(2), 256–259 (1999). DOI 10.1103/PhysRevLett.83.256. URL Google Scholar
  21. [21]
    Chiu, C., Fomytskyi, M., Grigsby, F., etal.: Laser electron accelerators for radiation medicine: A feasibility study. Med. Phys. 31(7), 2042–2052 (2004). DOI 10.1118/1.1739301. URL
  22. [22]
    Clark, E.L., Krushelnick, K., Davies, J.R., etal.: Measurements of energetic proton transport through magnetized plasma from intense laser interactions with solids. Phys. Rev. Lett. 84(4), 670–673 (2000). DOI 10.1103/PhysRevLett.84.670. URL Google Scholar
  23. [23]
    Cowan, T.E., Hunt, A.W., Johnson, J., etal.: High energy electrons, positrons and photonuclear reactions in petawatt laser–solid experiments. In: H.B. I. Tajima K. Mima (ed.) High Field Science, p. 145. Kluwer/Plenum, New York (2000)Google Scholar
  24. [24]
    Cowan, T.E., Hunt, A.W., Phillips, T.W., etal.: Photonuclear fission from high energy electrons from ultraintense laser-solid interactions. Phys. Rev. Lett. 84(5), 903–906 (2000). DOI 10.1103/PhysRevLett.84.903. URL Google Scholar
  25. [25]
    Disdier, L., Garconnet, J.P., Malka, G., Miquel, J.L.: Fast neutron emission from a high-energy ion beam produced by a high-intensity subpicosecond laser pulse. Phys. Rev. Lett. 82(7), 1454–1457 (1999). DOI 10.1103/PhysRevLett.82.1454. URL Google Scholar
  26. [26]
    ELI: The Extreme Light Infrastructure European Project: ELI homepage. URL
  27. [27]
    Eliezer, S., Mendonca, J.T., Bingham, R., Norreys, P.: A new diagnostic for very high magnetic fields in expanding plasmas. Phys. Lett. A 336(4-5), 390–395 (2005). DOI doi:10.1016/j.physleta.2005.01.040zbMATHCrossRefADSGoogle Scholar
  28. [28]
    Esirkepov, T., Yamagiwa, M., Tajima, T.: Laser ion-acceleration scaling laws seen in multiparametric particle-in-cell simulations. Phys. Rev. Lett. 96(10), 105001 (2006). DOI 10.1103/PhysRevLett.96.105001. URL Google Scholar
  29. [29]
    Esirkepov, T.Z., Bulanov, S.V., Nishihara, K., etal.: Proposed double-layer target for the generation of high-quality laser-accelerated ion beams. Phys. Rev. Lett. 89(17), 175003 (2002). DOI 10.1103/PhysRevLett.89.175003. URL Google Scholar
  30. [30]
    Fortov, V.E.: Intense Shock Waves and Extreme States of Matter. Bukos, Moscow (2005)Google Scholar
  31. [31]
    Fortov, V.E. (ed.): Explosive-Driven Generators of Powerful Electrical Current Pulses. Cambridge International Science, Cambridge (2007)Google Scholar
  32. [32]
    Fortov, V.E., Hoffmann, D.H.H., Sharkov, B.Y.: Intense ion beams for generating extreme states of matter. Phys. Usp. 51(2), 109 (2008). DOI 10.1070/PU2008v051n02ABEH006420. URL Google Scholar
  33. [33]
    Fujiwara, M., Kawase, K., Titov, A.T.: Parity non-conservation measurements with photons at SPring-8. AIP Conf. Proc. 802(1), 246–249 (2005). DOI 10.1063/1.2140661. URL
  34. [34]
    Gahn, C., Tsakiris, G.D., Pretzler, G., etal.: Generating positrons with femtosecond-laser pulses. Appl. Phys. Lett. 77(17), 2662–2664 (2000). DOI 10.1063/1.1319526. URL Google Scholar
  35. [35]
    Galy, J., Maucec, M., Hamilton, D.J., etal.: Bremsstrahlung production with high-intensity laser matter interactions and applications. New J. Phys. 9(2), 23 (2007). DOI 10.1088/1367-2630/9/2/023CrossRefADSGoogle Scholar
  36. [36]
    Giddings, S.B., Thomas, S.: High energy colliders as black hole factories: The end of short distance physics. Phys. Rev. D 65(5), 056010 (2002). DOI 10.1103/PhysRevD.65.056010. URL Google Scholar
  37. [37]
    Ginzburg, V.L.: Applications of Electrodynamics in Theoretical Physics and Astrophysics. Gordon and Breach, New York (1989)Google Scholar
  38. [38]
    Ginzburg, V.L.: The Physics of a Lifetime: Reflections on the Problems and Personalities of 20th Century Physics. Springer, Berlin, Heidelberg (2001)Google Scholar
  39. [39]
    Hawke, P.S., Burgess, T.J., Duerre, D.E., etal.: Observation of electrical conductivity of isentropically compressed hydrogen at megabar pressures. Phys. Rev. Lett. 41(14), 994–997 (1978). URL Google Scholar
  40. [40]
    Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43(3), 199–220 (1975). DOI 10.1007/BF02345020CrossRefMathSciNetADSGoogle Scholar
  41. [41]
    HiPER: High Power Laser Energy Research Project: HiPER homepage. URL
  42. [42]
    Jung, I.D., Kartner, F.X., Matuschek, N., etal.: Self-starting 6.5-fs pulses from a Ti:sapphire laser. Opt. Lett. 22(13), 1009–1011 (1997). DOI 10.1364/OL.22.001009. URL
  43. [43]
    Kando, M., Nakajima, K., Arinaga, M., etal.: Interaction of terawatt laser with plasma. J. Nucl. Mater. 248(1), 405–407 (1997). DOI 10.1016/S0022-3115(97)00177-3CrossRefADSGoogle Scholar
  44. [44]
    Kanel, G.I., Rasorenov, S.V., Fortov, V.E.: Shock-Wave Phenomena and the Properties of Condensed Matter. Springer, New York (2004)Google Scholar
  45. [45]
    Khazanov, E.A., Sergeev, A.M.: Petawatt laser based on optical parametric amplifiers: their state and prospects. Phys. Usp. 51(9), 969 (2008). DOI 10.1070/PU2008v051n09ABEH006612. URL Google Scholar
  46. [46]
    King, N.S.P., Ables, E., Adams, K., etal.: An 800-MeV proton radiography facility for dynamic experiments. Nucl. Instrum. Meth. Phys. Res. A 424(1), 84–91 (1999). DOI 10.1016/S0168-9002(98)01241-8Google Scholar
  47. [47]
    Kodama, R., Tanaka, K.A., Sentoku, Y., etal.: Observation of ultrahigh gradient electron acceleration by a self-modulated intense short laser pulse. Phys. Rev. Lett. 84(4), 674–677 (2000). DOI 10.1103/PhysRevLett.84.674. URL Google Scholar
  48. [48]
    Konyukhov, A.V., Likhachev, A.P., Oparin, A.M., etal.: Numerical modeling of shock-wave instability in thermodynamically nonideal media. JETP 98(4), 811–819 (2004). DOI 10.1134/1.1757680CrossRefADSGoogle Scholar
  49. [49]
    Kruer, W.L.: The Physics of Laser Plasma Interactions. Addison-Wesley, Reading, MA (1988)Google Scholar
  50. [50]
    Ledingham, K.W.D., McKenna, P., Singhal, R.P.: Applications for nuclear phenomena generated by ultra-intense lasers. Science 300(5622), 1107–1111 (2003). DOI 10.1126/science.1080552. URL Google Scholar
  51. [51]
    Ledingham, K.W.D., Spencer, I., McCanny, T., etal.: Photonuclear physics when a multiterawatt laser pulse interacts with solid targets. Phys. Rev. Lett. 84(5), 899–902 (2000). DOI 10.1103/PhysRevLett.84.899. URL Google Scholar
  52. [52]
    Leemans, W.P., Rodgers, D., Catravas, P.E., etal.: Interaction of an ultrashort, relativistically strong laser pulse with an overdense plasma. Phys. Plasmas 8(5), 2510–2516 (2001). DOI 10.1063/1.1352617CrossRefADSGoogle Scholar
  53. [53]
    Liang, E.P., Wilks, S.C., Tabak, M.: Pair production by ultraintense lasers. Phys. Rev. Lett. 81(22), 4887–4890 (1998). DOI 10.1103/PhysRevLett.81.4887. URL Google Scholar
  54. [54]
    Lindl, J.D.: Inertial Confinement Fusion. Springer, New York (1998)Google Scholar
  55. [55]
    Mackinnon, A.J., Borghesi, M., Hatchett, S., etal.: Effect of plasma scale length on multi-MeV proton production by intense laser pulses. Phys. Rev. Lett. 86(9), 1769–1772 (2001). DOI 10.1103/PhysRevLett.86.1769. URL Google Scholar
  56. [56]
    Magill, J., Schwoerer, H., Ewald, F., etal.: Laser transmutation of iodine-129. Appl. Phys. B 77(4), 387–390 (2003). DOI 10.1007/s00340-003-1306-4CrossRefADSGoogle Scholar
  57. [57]
    MAGPIE Project: MAGPIE Project Home Page. URL
  58. [58]
    aine, P., Mourou, G.: Amplification of 1-nsec pulses in Nd:glass followed by compression to 1 psec. Opt. Lett. 13(3), 467–469 (1988). URL
  59. [59]
    Maine, P., Strickland, D., Bado, P., etal.: Generation of ultrahigh peak power pulses by chirped pulse amplification. IEEE J. Quantum Electron. 24(2), 398–403 (1988). DOI 10.1109/3.137CrossRefADSGoogle Scholar
  60. [60]
    Maksimchuk, A., Flippo, K., Krause, H., etal.: Plasma phase transition in dense hydrogen and electron–hole plasmas. Plasma Phys. Rep. 30(6), 473–495 (2004). DOI 10.1134/1.1768582CrossRefADSGoogle Scholar
  61. [61]
    Maksimchuk, A., Gu, S., Flippo, K., etal.: Forward ion acceleration in thin films driven by a high-intensity laser. Phys. Rev. Lett. 84(18), 4108–4111 (2000). DOI 10.1103/PhysRevLett.84.4108. URL Google Scholar
  62. [62]
    Malka, G., Aleonard, M.M., Chemin, J.F., etal.: Relativistic electron generation in interactions of a 30 TW laser pulse with a thin foil target. Phys. Rev. E 66(6), 066402 (2002). DOI 10.1103/PhysRevE.66.066402. URL Google Scholar
  63. [63]
    Malka, V., Fritzler, S., Lefebvre, E., etal.: Electron acceleration by a wake field forced by an intense ultrashort laser pulse. Science 298(5598), 1596–1600 (2002). DOI 10.1126/science.1076782. URL Google Scholar
  64. [64]
    Mangles, S.P.D., Murphy, C.D., Najmudin, Z., etal.: Monoenergetic beams of relativistic electrons from intense laser–plasma interactions. Nature 431(7008), 535–538 (2004). DOI 10.1038/nature02939CrossRefADSGoogle Scholar
  65. [65]
    Mason, R.J., Tabak, M.: Magnetic field generation in high–intensity–laser––matter interactions. Phys. Rev. Lett. 80(3), 524–527 (1998). DOI 10.1103/PhysRevLett.80.524. URL Google Scholar
  66. [66]
    McKenna, P., Ledingham, K.W., Shimizu, S., etal.: Broad energy spectrum of laser-accelerated protons for spallation-related physics. Phys. Rev. Lett. 94(8), 084801 (2005). DOI 10.1103/PhysRevLett.94.084801. URL Google Scholar
  67. [67]
    Mima, K., Fast Ignition Research Group: Present status and future prospects of laser fusion and related high energy density plasma research. AIP Conf. Proc. 740(1), 387–397 (2004). DOI 10.1063/1.1843522. URL
  68. [68]
    Mima, K., Ohsuga, T., Takabe, H., etal.: Wakeless triple-soliton accelerator. Phys. Rev. Lett. 57(12), 1421–1424 (1986). URL Google Scholar
  69. [69]
    Mourou, G.A., Barry, C.P.J., Perry, M.D.: Ultrahigh-intensity lasers: physics of the extreme on a tabletop. Phys. Today 51(1), 22–28 (1998). DOI 10.1063/1.882131CrossRefADSGoogle Scholar
  70. [70]
    Mourou, G.A., Tajima, T., Bulanov, S.V.: Optics in the relativistic regime. Rev. Mod. Phys. 78(2), 1804–1816 (2006). DOI 10.1103/RevModPhys.78.309. URL Google Scholar
  71. [71]
    Najmudin, Z., Walton, B.R., Mangles, S.P.D., etal.: Measurements of magnetic fields generated in underdense plasmas by intense lasers. AIP Conf. Proc. 827(1), 53–64 (2006). DOI 10.1063/1.2195197. URL
  72. [72]
    Nakajima, K., Fisher, D., Kawakubo, T., etal.: Observation of ultrahigh gradient electron acceleration by a self-modulated intense short laser pulse. Phys. Rev. Lett. 74(22), 4428–4431 (1995). DOI 10.1103/PhysRevLett.74.4428. URL Google Scholar
  73. [73]
    Narozhny, N.B., Bulanov, S.S., Mur, V.D., Popov, V.S.: e+e- – pair production by a focused laser pulse in vacuum.Phys. Lett. A 330(1-2), 1–6 (2004). DOI 10.1016/j.physleta.2004.07.013zbMATHCrossRefADSGoogle Scholar
  74. [74]
    National Research Council: Frontiers in High Energy Density Physics. National Academies Press, Washington, DC (2003)Google Scholar
  75. [75]
    Nellis, W.J.: Shock compression of hydrogen and other small molecules. In: G.L. Chiarotti, R.J. Hemley, M. Bernasconi, L. Ulivi (eds.) High Pressure Phenomena, Proceedings of the International School of Physics “Enrico Fermi” Course CXLVII, p. 607. IOS Press, Amsterdam (2002)Google Scholar
  76. [76]
    Norreys, P.A., Santala, M., Clark, E., etal.: Observation of a highly directional γ-ray beam from ultrashort, ultraintense laser pulse interactions with solids. Phys. Plasmas 6(5), 2150–2156 (1999). DOI 10.1063/1.873466CrossRefADSGoogle Scholar
  77. [77]
    Okun’, L.B.: Leptony i kvarki, 2nd edn. Nauka, Moscow (1990). [English Transl.: Leptons and Quarks. North-Holland, Amsterdam (1982)]Google Scholar
  78. [78]
    Parker, L.: Quantized fields and particle creation in expanding universes. I. Phys. Rev. 183(5), 1057–1068 (1969). DOI 10.1103/PhysRev.183.1057. URL Google Scholar
  79. [79]
    Pavlovski, A.I., Boriskov, G.V., etal.: Isentropic solid hydrogen compression by ultrahigh magnetic field pressure in megabar range. In: C.M. Fowler, R.S. Caird, D.T. Erickson (eds.) Megagauss Technology and Pulsed Power Applications, p. 255. Plenum, New York (1987)Google Scholar
  80. [80]
    Pukhov, A.: Strong field interaction of laser radiation. Rep. Prog. Phys. 66(1), 47–101 (2003). DOI 10.1088/0034-4885/66/1/202CrossRefADSGoogle Scholar
  81. [81]
    Pukhov, A., Meyer-ter-Vehn, J.: Laser wake field acceleration: the highly non-linear broken-wave regime. Appl. Phys. B 74(4-5), 355–361 (2002). DOI 10.1007/s003400200795CrossRefADSGoogle Scholar
  82. [82]
    Rubakov, V.A.: Multidimensional models of particle physics. Phys. Usp. 46(2), 211 (2003). DOI 10.1070/PU2003v046n02ABEH001355. URL
  83. [83]
    Rubakov, V.A., Shaposhnikov, M.E.: Do we live inside a domain wall? Phys. Lett. B 125(2-3), 136–138 (1983). DOI 10.1016/0370-2693(83)91253-4CrossRefADSGoogle Scholar
  84. [84]
    Ryutov, D.D., Remington, B.A., Robey, H.F., Drake, R.P.: Magnetodynamic scaling: from astrophysics to the laboratory. Phys. Plasmas 8(5), 1804–1816 (2001). DOI 10.1063/1.1344562CrossRefADSGoogle Scholar
  85. [85]
    Sarkisov, G.S., Bychenkov, V.Y., Novikov, V.N., etal.: Self-focusing, channel formation, and high-energy ion generation in interaction of an intense short laser pulse with a He jet. Phys. Rev. E 59(6), 7042–7054 (1999). DOI 10.1103/PhysRevE.59.7042. URL
  86. [86]
    Schutzhold, R., Schaller, G., Habs, D.: Signatures of the Unruh effect from electrons accelerated by ultrastrong laser fields. Phys. Rev. Lett. 97(12), 121302 (2006). DOI 10.1103/PhysRevLett.97.121302. URL Google Scholar
  87. [87]
    Schwoerer, H., Ewald, F., Sauerbrey, R., etal.: Fission of actinides using a tabletop laser. Europhys. Lett. 91(1), 47–52 (2003). DOI 10.1209/epl/i2003-00243-1CrossRefADSGoogle Scholar
  88. [88]
    Schwoerer, H., Magill, J., Beleites, B. (eds.): Lasers and Nuclei: Applications of Ultrahigh Intensity Lasers in Nuclear Science, emphLecture Notes in Physics, vol. 694. Springer, Berlin (2006)Google Scholar
  89. [89]
    Shearer, J.W., Garrison, J., Wong, J., Swain, J.E.: Pair production by relativistic electrons from an intense laser focus. Phys. Rev. A 8(3), 1582–1588 (1972). DOI 10.1103/PhysRevA.8.1582. URL Google Scholar
  90. [90]
    Strickland, D., Mourou, G.: Compression of amplified chirped optical pulses. Opt. Commun. 56(3), 219–221 (1985). DOI 10.1016/0030-4018(85)90120-8CrossRefADSGoogle Scholar
  91. [91]
    Strickland, D., Mourou, G.: Compression of amplified chirped optical pulses. Opt. Commun. 55(6), 447–449 (1985). DOI 10.1016/0030-4018(85)90151-8CrossRefADSGoogle Scholar
  92. [92]
    Sudan, R.N.: Mechanism for the generation of 10 9 G magnetic fields in the interaction of ultraintense short laser pulse with an overdense plasma target. Phys. Rev. Lett. 70(20), 3075–3078 (1993). DOI 10.1103/PhysRevLett.70.3075CrossRefADSGoogle Scholar
  93. [93]
    Tajima, T.: Summary of Working Group 7 on “Exotic acceleration schemes”. AIP Conf. Proc. 569(1), 77–81 (2001). DOI 10.1063/1.1384337. URL
  94. [94]
    Tatarakis, M., Gopal, A., Watts, I., etal.: Measurements of ultrastrong magnetic fields during relativistic laser–plasma interactions. Phys. Plasmas 9(5), 2244–2250 (2002). DOI 10.1063/1.1469027. URL Google Scholar
  95. [95]
    Tatarakis, M., Watts, I., Beg, F.N., etal.: Laser technology: Measuring huge magnetic fields. Nature 415(6869), 280 (2002). DOI 10.1038/415280aCrossRefADSGoogle Scholar
  96. [96]
    Telnov, V.: Photon collider at TESLA. Nucl. Instrum. Methods Phys. Res. A 472(1-2), 43–60 (2001). DOI 110.1016/S0168-9002(01)01161-5CrossRefADSGoogle Scholar
  97. [97]
    Thoma, M.H.: Field theoretic description of ultrarelativistic electron–positron plasmas (2008). URL
  98. [98]
    Trunin, R.F.: Shock compressibility of condensed materials in strong shock waves generated by underground nuclear explosions. Phys. Usp. 37(11), 1123 (1994). DOI 10.1070/PU1994v037n11ABEH000055. URL
  99. [99]
    Umstadter, D.: Photonuclear physics: Laser light splits atom. Nature 404(6775), 239 (2000). DOI 10.1038/35005202CrossRefGoogle Scholar
  100. [100]
    Unruh, W.G.: Notes on black-hole evaporation. Phys. Rev. D 14(4), 870–892 (1976). DOI 10.1103/PhysRevD.14.870. URL Google Scholar
  101. [101]
    Vacca, J.R. (ed.): The World’s 20 Greatest Unsolved Problems. Prentice Hall PTR, Englewood Cliffs, NJ (2004)Google Scholar
  102. [102]
    Vladimirov, A.S., Voloshin, N.P., Nogin, V.N., etal.: Shock compressibility of aluminum at p > 1 Gbar. JETP Lett. 39(2), 82 (1984)ADSGoogle Scholar
  103. [103]
    Wagner, U., Tatarakis, M., Gopal, A., etal.: Laboratory measurements of 0.7 gg magnetic fields generated during high-intensity laser interactions with dense plasmas. Phys. Rev. E 70(2), 026401 (2004). DOI 10.1103/PhysRevE.70.026401CrossRefADSGoogle Scholar
  104. [104]
    Weibel, E.S.: Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution. Phys. Rev. Lett. 2(3), 83–84 (1959). DOI 10.1103/PhysRevLett.2.83CrossRefADSGoogle Scholar
  105. [105]
    Zagar, T., Galy, J., Magill, J., Kellett, M.: Laser-generated nanosecond pulsed neutron sources: scaling from VULCAN to table-top. New J. Phys. 7, 253 (2005). DOI 10.1088/1367-2630/7/1/253. URL
  106. [106]
    Zasov, A.V., Postnov, K.A.: Obshchaya astrofizika (General Astrophysics). Vek 2, Fryazino (2006)Google Scholar
  107. [107]
    Zeldovich, Y.B., Popov, V.S.: Electronic structure of superheavy atoms. Sov. Phys. – Usp. 14, 673 (1972)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Russian Academy of Sciences, Joint Institute for High TemperaturesMoscowRussia

Personalised recommendations