High Energy Densities in Laboratories

Part of the The Frontiers Collection book series (FRONTCOLL)


The ultimate objective of experiments in high-energy-density physics consists in the generation of extreme material parameters, whose values are at the boundaries of modern experimental capabilities (Table 3.1). Already, plasma states with peak pressures of hundreds or thousands of megabars, temperatures up to 10 billion degrees, and energy densities of 109 J/cm3, which is comparable to the energy density of nuclear matter, have become the subject of laboratory investigations [29, 38, 31, 10, 99, 9].


Shock Wave High Energy Density Shock Compression Nuclear Explosion Fermi Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Al’tshuler, L.V.: Use of shock waves in high-pressure physics.Sov. Phys. –Usp. 8(1), 52–91 (1965). DOI 10.1070/PU1965v008n01ABEH003062. URL
  2. [2]
    Al’tshuler, L.V., Krupnikov, K.K., Fortov, V.E., Funtikov, A.I.: Origins ofmegabar pressure physics. Herald Russ. Acad. Sci. 74(6), 613 (2004)Google Scholar
  3. [3]
    Al’tshuler, L.V., N., K.N., Kuz’mina, L.V., Chekin, B.S.: Shock adiabats for ultrahigh pressures. JETP 45, 167 (1977)Google Scholar
  4. [4]
    Al’tshuler, L.V., Trunin, R.F., Krupnikov, K.K., Panov, N.V.: Explosivelaboratory devices for shock wave compression studies. Phys. Usp. 39(5), 539 (1996). DOI 10.1070/PU1996v039n05ABEH000147. URL Scholar
  5. [5]
    Al’tshuler, L.V., Trunin, R.F., Urlin, V.D., et al.: Development ofdynamic high-pressure techniques in Russia. Phys. Usp. 42(3),261 (1999). DOI 10.1070/PU1999v042n03ABEH000545. URL Scholar
  6. [6]
    Andreev, V.F., Karaev, J.A., Umrihin, N.M., et al. (eds.): Uslovija generaciiimpul’snogo nejtronnogo izluchenija pri vzryvnom obzhatii termojadernojplazmy. IAE-5519/7 (Conditions of Generation of Pulse Neutron Radiationby Explosive Compression of Thermonuclear Plasma). IAE, Moscow (1992)Google Scholar
  7. [7]
    Anisimov, S.I., Prokhorov, A.M., Fortov, V.E.: Application of high-powerlasers to study matter at ultrahigh pressures. Sov. Phys. – Usp. 27(3),181–205 (1984). DOI 10.1070/PU1984v027n03ABEH004036. URL
  8. [8]
    Atzeni, S., Meyer-ter-Vehn, J.: The Physics of Inertial Fusion. Oxford UniversityPress, Oxford (2004)CrossRefGoogle Scholar
  9. [9]
    Avrorin, E.N., Simonenko, V.A., Shibarshov, L.I.: Physics researchduring nuclear explosions. Phys. Usp. 49(4), 432 (2006). DOI 10.1070/PU2006v049n04ABEH005958. URL
  10. [10]
    Avrorin, E.N., Vodolaga, B.K., Simonenko, V.A., Fortov, V.E.: Intenseshock waves and extreme states of matter. Phys. Usp. 36(5),337–364 (1993). DOI 10.1070/PU1993v036n05ABEH002158. URL Google Scholar
  11. [11]
    Azizov, E.A., Alexandrov, V.V., Alikhanov, S.G., et al.: Pulse powersystem development for megajoule X-ray facility BAIKAL. AIPConf. Proc. 651(1), 29–32 (2002). DOI 10.1063/1.1531274. URL
  12. [12]
    Bazanov, O.V., Bespalov, V.E., Zharkov, A.P., et al.: Irregular reflection ofconically converging shock-waves in Plexiglas and copper. High Temp. 23(5), 781–787 (1985)Google Scholar
  13. [13]
    Belov, S.I., Boriskov, G.V., Bykov, A.I., et al.: Shock compression of soliddeuterium. JETP Lett. 76(7), 433–435 (2002)CrossRefADSGoogle Scholar
  14. [14]
    Betti, R., Anderson, K., Boehly, T.R., et al.: Progress in hydrodynamics theoryand experiments or direct-drive and fast ignition inertial confinementfusion. Plasma Phys. Control. Fusion 48(12B), B153–B163 (2006). DOI 10.1088/0741-3335/48/12B/S15CrossRefGoogle Scholar
  15. [15]
    Boehler, R.: Temperatures in the Earth’s core from melting-point measurementsof iron at high static pressures. Nature 363(6429), 534–536 (1993).DOI 10.1038/363534a0CrossRefADSGoogle Scholar
  16. [16]
    Boehler, R., Forzandonea, D.: The laser heated diamond cell: high P–T phasediagrams. In: G.L. Chiarotti, R.J. Hemley, M. Bernasconi, L. Ulivi (eds.) High Pressure Phenomena, pp. 55–66. IOS Press, Amsterdam (2002)Google Scholar
  17. [17]
    Boriskov, G.V., Bykov, A.I., Il’kaev, R.I., et al.: Shock compression of liquid deuterium up to 109 GPa. Phys. Rev. B 71(9), 092104 (2005). DOI 10.1103/PhysRevB.71.092104. URL Google Scholar
  18. [18]
    Boyko, B.A., Bykov, A.I., et al.: More than 20 MG magnetic field generationin the cascade magnetocumulative MC-1 generator. In: H.J. Schneider-Muntau (ed.) Megagauss Magnetic Field Generation, Its Application to Scienceand Ultra-High Pulsed-Power Technology. Proc. VIIIth Int. Conf. MegagaussMagnetic Field Generation and Related Topics, p. 61. World Scientific, Singapore (2004)CrossRefGoogle Scholar
  19. [19]
    Bunkenberg, J., Boles, J., Brown, D., et al.: The omega high-powerphosphate-glass system: design and performance. IEEE J. Quantum Electron. 17(9), 1620–1628 (1981)CrossRefADSGoogle Scholar
  20. [20]
    Calderola, P., Knopfel, H. (eds.): Physics of High Energy Density. Academic, New York (1971)Google Scholar
  21. [21]
    Cavailler, C.: Inertial fusion with the LMJ. Plasma Phys. Control. Fusion 47(12B), B389–B403 (2005). DOI 10.1088/0741-3335/47/12B/S28CrossRefGoogle Scholar
  22. [22]
    Chen, F.F.: Introduction to Plasma Physics and Controlled Fusion, Vol. 1, 2nd edn. Springer, New York (1984)Google Scholar
  23. [23]
    Chittenden, J.P., Ciardi, A., Jennings, C.A., et al.: Structural evolutionand formation of high-pressure plasmas in X-pinches. Phys. Rev. Lett. 98(2), 025003 (2007). DOI 10.1103/PhysRevLett.98.025003. URL Google Scholar
  24. [24]
    Courant, R., Friedrichs, K.O.: Supersonic Flow and Shock Waves. Interscience, New York (1948)zbMATHGoogle Scholar
  25. [25]
    Cuneo, M.E., Vesey, R.A., Bennett, G.R., et al.: Progress in symmetric ICFcapsule implosions and wire-array Z-pinch source physics for double-pinchdrivenhohlraums. Plasma Phys. Control. Fusion 48(2), R1–R35 (2006). DOI 10.1088/0741-3335/48/2/R01CrossRefADSGoogle Scholar
  26. [26]
    Da Silva, L.B., Celliers, P., Collins, G.W., et al.: Absolute equation of statemeasurements on shocked liquid deuterium up to 200 GPa (2 Mbar). Phys.Rev. Lett. 78(3), 483–486 (1997). DOI 10.1103/PhysRevLett.78.483CrossRefADSGoogle Scholar
  27. [27]
    Ditmire, T., Springate, E., Tisch, J.W., et al.: Explosion of atomic clustersheated by high-intensity femtosecond laser pulses. Phys. Rev.A 57(1), 369–382 (1998). DOI 10.1103/PhysRevA.57.369. URL Google Scholar
  28. [28]
    Drake, R.P.: High-Energy-Density Physics. Springer, Berlin, Heidelberg(2006)Google Scholar
  29. [29]
    Fortov, V., Iakubov, I., Khrapak, A.: Physics of Strongly Coupled Plasma. Oxford University Press, Oxford (2006)zbMATHCrossRefGoogle Scholar
  30. [30]
    Fortov, V.E. (ed.): Entsiklopediya nizkotemperaturnoi plazmy (Encyclopediaof Low-Temperature Plasma). Nauka, Moscow (2000)Google Scholar
  31. [31]
    Fortov, V.E.: Intense Shock Waves and Extreme States of Matter. Bukos,Moscow (2005)Google Scholar
  32. [32]
    Fortov, V.E. (ed.): Explosive-Driven Generators of Powerful Electrical CurrentPulses. Cambridge International Science, Cambridge (2007)Google Scholar
  33. [33]
    Fortov, V.E.: Intense shock waves and extreme states of matter. Phys.Usp. 50(4), 333 (2007). DOI 10.1070/PU2007v050n04ABEH006234. URL
  34. [34]
    Fortov, V.E., Al’tshuler, L.V., Trunin, R.F., Funtikov, A.I.: High-PressureShock Compression of Solids VII: Shock Waves and Extreme States of Matter.Springer, New York (2004)Google Scholar
  35. [35]
    Fortov, V.E., Gryaznov, V.K., Mintsev, V.B., et al.: Thermophysical propertiesof shock compressed argon and xenon. Contrib. Plasma Phys. 41(2–3), 215–218 (2001). DOI 10.1002/1521-3986(200103)41:2/3(215::AID-CTPP215) 3.0.CO;2-GADSGoogle Scholar
  36. [36]
    Fortov, V.E., Hoffmann, D.H.H., Sharkov, B.Y.: Intense ion beamsfor generating extreme states of matter. Phys. Usp. 51(2), 109(2008). DOI 10.1070/PU2008v051n02ABEH006420. URL
  37. [37]
    Fortov, V.E., Ilkaev, R.I., Arinin, V.A., et al.: Phase transitionin a strongly nonideal deuterium plasma generated by quasiisentropicalcompression at megabar pressures. Phys. Rev. Lett. 99(18), 185001 (2007). DOI 10.1103/PhysRevLett.99.185001. URL Google Scholar
  38. [38]
    Fortov, V.E., Khrapak, A.G., Yakubov, I.T.: Fizika neideal’noi plazmy (Physics of Nonideal Plasma). Fizmatlit, Moscow (2004)Google Scholar
  39. [39]
    Fortov, V.E., Lomonosov, I.V.: Thermodynamics of extreme states of matter.Pure Appl. Chem. 69(4), 893–904 (1997)CrossRefGoogle Scholar
  40. [40]
    Fortov, V.E., Mintsev, V.B., Ternovoi, V.Y., et al.: Conductivity of nonidealplasma. High Temp. Mater. Processes 8(3), 447–459 (2004). DOI 10.1615/HighTempMatProc.v8.i3.100CrossRefGoogle Scholar
  41. [41]
    Fortov, V.E., Ternovoi, V.Y., Zhernokletov, M.V., et al.: Pressure-producedionization of nonideal plasma in a megabar range of dynamic pressures. JETP range of dynamic pressures. JETP 97(2), 259–278 (2003). DOI 10.1134/1.1608993CrossRefADSGoogle Scholar
  42. [42]
    Fortov, V.E., Ternovoi, V.Y., Zhernokletov, M.V., et al.: Pressure-producedionization of nonideal plasma in a megabar range of dynamic pressures. JETP 97(2), 259–278 (2003). DOI 10.1134/1.1608993CrossRefADSGoogle Scholar
  43. [43]
    Fortov, V.E., Yakushev, V.V., Kagan, K.L., et al.: Anomalous electric conductivityof lithium under quasi-isentropic compression to 60 GPa (0.6 Mbar).Transition into a molecular phase? JETP Lett. 70(9), 628–632 (1999)CrossRefADSGoogle Scholar
  44. [44]
    Gasilov, V.A., Zakharov, S.V., Smirnov, V.P.: Generation of intense radiationfluxes and megabar pressures in liner systems. JETP Lett. 53(2), 85 (1991)ADSGoogle Scholar
  45. [45]
    Ginzburg, V.L.: The Physics of a Lifetime: Reflections on the Problems andPersonalities of 20th Century Physics. Springer, Bnerlin, Heidelberg (2001)Google Scholar
  46. [46]
    Ginzburg, V.L.: On superconductivity and superfluidity (what I have andhave not managed to do), as well as on the “physical minimum” atthe beginning of the XXI century (December 8, 2003). Phys. Usp. 47(11), 1155 (2004). DOI 10.1070/PU2004v047n11ABEH001825. URL
  47. [47]
    Giorla, J., Bastian, J., Bayer, C., et al.: Target design for ignition experimentson the laser M´egajoule facility. Plasma Phys. Control. Fusion 48(12B), B75–B82 (2006). DOI 10.1088/0741-3335/48/12B/S0CrossRefGoogle Scholar
  48. [48]
    Glidden, S.C., Richter,M., Hammer, D.A., Kalantar, D.H.: 1 kWX-pinch softX-ray source powered by a 500 kA, 100 ns, 40 pps pulser. In: 9th IEEE Int.Pulsed Power Conf., 1993. Digest of Technical Papers, vol. 1, p. 459 (1993)Google Scholar
  49. [49]
    Glukhikh, V., Kuchinsky, V., Pechersky, O., et al.: Perspective of kiloterawattsoft X-ray source based on slow inductive storage with energy 1 gigajoule. In:H.V. Horn, S. Ichimaru (eds.) Proc. 12th Int. Conf. on High-Power ParticleBeams, BEAMS’98, June 7–12, 1998, Haifa, Israel, p. 71. IEEE, Piscataway, NJ (1998). DOI 10.1109/BEAMS.1998.822392Google Scholar
  50. [50]
    Grabovskii, E.V., Vorob’ev, O.Y., Dyabilin, K.S., et al.: Excitation of intenseshock waves by soft x radiation from a Z-pinch plasma. JETP Lett. 60(1), 1(1994)ADSGoogle Scholar
  51. [51]
    Grishechkin, S.K., Gruzdev, S.K., Gryaznov, V.K., et al.: Experimental measurementsof the compressibility, temperature, and light absorption in denseshock-compressed gaseous deuterium. JETP Lett. 80(6), 398–404 (2004)CrossRefADSGoogle Scholar
  52. [52]
    Gryaznov, V.K., Fortov, V.E., Zhernokletov, M.V., et al.: Shock compressionand thermodynamics of highly nonideal metallic plasma. JETP 87(4), 678–690 (1998). DOI 10.1134/1.558710CrossRefADSGoogle Scholar
  53. [53]
    Gryaznov, V.K., Nikolaev, D.N., Ternovoi, V.Y., et al.: Generation of a nonidealplasma by shock compression of a highly porous SiO2 aerogel. Chem.Phys. Rep. 17(1-2), 239–245 (1998)Google Scholar
  54. [54]
    Hammel, B.A., National Ignition Campaign Team: The NIF ignition program:progress and planning. Plasma Phys. Control. Fusion 48(12B), B497–B506 (2006). DOI 10.1088/0741-3335/48/12B/S47Google Scholar
  55. [55]
    Hawke, P.S., Burgess, T.J., Duerre, D.E., et al.: Observation ofelectrical conductivity of isentropically compressed hydrogen atmegabar pressures. Phys. Rev. Lett. 41(14), 994–997 (1978). URL Google Scholar
  56. [56]
    Hemley, R.J., Ashcroft, N.W.: The revealing role of pressure in the condensedmatter sciences. Phys. Today 51(8), 26–32 (1998). DOI 10.1063/1.882374CrossRefGoogle Scholar
  57. [57]
    Hemley, R.J., Mao, H.K.: Overview of static high pressure science. In: R.J.Hemley, G.L. Chiarotti, M. Bernasconi, L. Ulivi (eds.) High Pressure Phenomena, Proceedings of the International School of Physics “Enrico Fermi”Course CXLVII, p. 3. IOS Press, Amsterdam (2002)Google Scholar
  58. [58]
    Hogan, W.J. (ed.): Energy from Inertial Fusion. IAEA, Vienna, Austria (1995)Google Scholar
  59. [59]
    Iosilevskii, I.L., Griaznov, V.K.: Comparative accuracy of thermodynamicdescription of properties of a gas plasma in the Thomas–Fermi and Saha approximations.High Temp. 19(6), 799–803 (1982)Google Scholar
  60. [60]
    Kanel, G.I., Rasorenov, S.V., Fortov, V.E.: Shock-Wave Phenomena and theProperties of Condensed Matter. Springer, New York (2004)Google Scholar
  61. [61]
    Kirzhnits, D.A.: Extremal states of matter (ultrahigh pressuresand temperatures). Sov. Phys. – Usp. 14(4), 512–523(1972). DOI 10.1070/PU1972v014n04ABEH004734. URL
  62. [62]
    Kirzhnits, D.A., Lozovik, Y.E., Shpatakovskaya, G.V.: Statisticalmodel of matter. Sov. Phys. – Usp. 18(9), 649–672(1975). DOI 10.1070/PU1975v018n09ABEH005199. URL
  63. [63]
    Knudson, M.D., Hanson, D.L., Bailey, J.E., et al.: Equation of statemeasurements in liquid deuterium to 70 GPa. Phys. Rev. Lett. 87(22), 225501 (2001). DOI 10.1103/PhysRevLett.87.225501. URL Google Scholar
  64. [64]
    Kruer, W.L.: The Physics of Laser Plasma Interactions. Addison-Wesley,Reading, MA (1988)Google Scholar
  65. [65]
    Lebedev, S.V., Savvatimskii, A.I.: Metals during rapid heatingby dense currents. Sov. Phys. – Usp. 27(10), 749–771(1984). DOI 10.1070/PU1984v027n10ABEH004128. URL
  66. [66]
    Lee, C.M., Thorsos, E.I.: Properties of matter at high pressures and temperatures.Phys. Rev. A 17(6), 2073–2076 (1978). DOI 10.1103/PhysRevA.17.2073. URL Google Scholar
  67. [67]
    Lieb, E.H., Simon, B.: Thomas–Fermi theory revisited.Phys. Rev. Lett. 31(11), 681–683 (1973). URL Google Scholar
  68. [68]
    Lindl, J.D.: Inertial Confinement Fusion. Springer, New York (1998)Google Scholar
  69. [69]
    Loubeyre, P., Celliers, P.M., Hicks, D.G., et al.: Coupling static and dynamiccompressions: first measurements in dense hydrogen. High Pressure Res. 24(1), 25–31 (2004). DOI 10.1080/08957950310001635792CrossRefGoogle Scholar
  70. [70]
    Loubeyre, P., Occelli, F., Le Toulec, R.: Optical studies of solid hydrogento 320 GPa and evidence for black hydrogen. Nature 416(6881), 613–617(2002). DOI 10.1038/416613aCrossRefADSGoogle Scholar
  71. [71]
    Maksimov, E.G., Magnitskaya, M.V., Fortov, V.E.: Non-simple behaviorof simple metals at high pressure. Phys. Usp. 48(8),761 (2005). DOI 10.1070/PU2005v048n08ABEH002315. URL Scholar
  72. [72]
    McMahan, A.K., Ross, M.: In: K.D. Timmerhaus, M.S. Barber (eds.) HighPressure Science and Technology, p. 920. Plenum, New York (1979)Google Scholar
  73. [73]
    Mokhov, V.N.: Formation of the thermonuclear fusion ideas. In: V.D. Selemir, L.N. Plyashkevichu (eds.) Megagauss-IX, p. 665. VNIIEF, Sarov(2004)Google Scholar
  74. [74]
    More, R.M., Skupsky, S.: Nuclear-motion corrections to the Thomas–Fermi equation of state for high-density matter. Phys. Rev. A 14(1), 474–479 (1976). DOI 10.1103/PhysRevA.14.474. URL Google Scholar
  75. [75]
    Moses, E.I., Bonanno, R.E., Haynam, C.A., et al.: The National Ignition Facility:path to ignition in the laboratory. Eur. Phys. J. D 44(2), 215–218(2006). DOI 10.1140/epjd/e2006-00106-3CrossRefADSGoogle Scholar
  76. [76]
    Mourou, G.A., Tajima, T., Bulanov, S.V.: Optics in the relativistic regime.Rev. Mod. Phys. 78(2), 1804–1816 (2006). DOI 10.1103/RevModPhys.78.309. URL Google Scholar
  77. [77]
    Nabatov, S.S., Dremin, A.M., Postnov, V.I., Yakushev, V.V.: Measurementof the electrical conductivity of sulfur under superhigh dynamic pressures.JETP Lett. 29(7), 369 (1979)ADSGoogle Scholar
  78. [78]
    National Research Council: Frontiers in High Energy Density Physics. NationalAcademies Press, Washington, DC (2003)Google Scholar
  79. [79]
    Nellis, W.J.: Dynamic compression of materials: metallization of fluid hydrogenat high pressures. Rep. Prog. Phys. 69(5), 1479–1580 (2006). DOI 10.1088/0034-4885/69/5/R05CrossRefADSGoogle Scholar
  80. [80]
    Oslon, C., Rochau, G., et al.: Development path for Z-pinch IFE. Fusion Sci.Technol. 47(3), 633–640 (2005)Google Scholar
  81. [81]
    Parsons, W., Ballard, E., Bartsch, R., et al.: The atlas project – a new pulsedpower facility for high energy density physics experiments. IEEE Trans.Plasma Sci. 25(2), 205–211 (1997). DOI 10.1109/27.602492CrossRefADSGoogle Scholar
  82. [82]
    Pavlovski, A.I., Boriskov, G.V., et al.: Isentropic solid hydrogen compressionby ultrahigh magnetic field pressure in megabar range. In: C.M. Fowler,R.S. Caird, D.T. Erickson (eds.) Megagauss Technology and Pulsed Power Applications, p. 255. Plenum, New York (1987)Google Scholar
  83. [83]
    Pukhov, A.: Strong field interaction of laser radiation. Rep. Prog. Phys. 66(1), 47–101 (2003). DOI 10.1088/0034-4885/66/1/202CrossRefADSGoogle Scholar
  84. [84]
    Quintenz, J., Sandia’s Pulsed Power Team: Pulsed power team. In: Proc. 13thInt. Conf. on High Power Particle Beams. Nagaoka, Japan (2000)Google Scholar
  85. [85]
    Reinovsky, R.E., Anderson, W.E., Atchison, W.L., et al.: Shock-wave andmaterial properties experiments using the Los Alamos Atlas pulsed powersystem. AIP Conf. Proc. 706(1), 1191–1194 (2004). DOI 10.1063/1.1780451. URL
  86. [86]
    Ryutov, D.D., Derzon, M.S., Matzen, M.K.: The physics of fast Z-pinches.Rev. Mod. Phys. 72(1), 167–223 (2000). DOI 10.1103/RevModPhys.72.167.URL Google Scholar
  87. [87]
    Sansone, G., Benedetti, E., Calegari, F., et al.: Isolatedsingle-cycle attosecond pulses. Science 314(5798),443–446 (2006). DOI 10.1126/science.1132838. URL Google Scholar
  88. [88]
    Schatz, T., Schramm, U., Habs, D.: Crystalline ion beams. Nature 412(6848),717–720 (2001). DOI 10.1038/35089045CrossRefADSGoogle Scholar
  89. [89]
    Schramm, U., Schatz, T., Bussmann, M., Habs, D.: Cooling and heating ofcrystalline ion beams. J. Phys. B 36(3), 561–571 (2003). DOI 10.1088/0953-4075/36/3/314CrossRefGoogle Scholar
  90. [90]
    Selimir, V.D., Tatsenko, O.M., Platonov, V.V.: Investigations in solid statephysics in ultra-high magnetic fields – experimental results of Kapitsa series.In: M. von Ortenberg (ed.) Proc. of the Xth Megagauss Conf., Berlin 2004, pp. 219–226. VNIIEF, Sarov, Russia (2005)Google Scholar
  91. [91]
    Sharkov, B.Y. (ed.): Yadernyi sintez s inertsionnym uderzhaniem (InertialConfinement Nuclear Fusion). Fizmatlit, Moscow (2005)Google Scholar
  92. [92]
    Shilkin, N.S., Dudin, S.V., Gryaznov, V.K., et al.: Measurements of the electronconcentration and conductivity of a partially ionized inert gas plasma.JETP 97(5), 922–931 (2003). DOI 10.1134/1.1633948CrossRefADSGoogle Scholar
  93. [93]
    Sinko, G.V.: Calculation of thermodynamic functions of simple substanceson the basis of the equations of the self-coordinated field [in Russian]. Chis.Met. Meh. Spl. Sred. 10(1), 124 (1979)Google Scholar
  94. [94]
    Sinko, G.V.: Some results of calculations of thermodynamic functions of aluminum,copper, cadmium and lead. A method of the self-coordinated field [inRussian]. Chis. Met. Meh. Spl. Sred. 12(1), 121 (1981)Google Scholar
  95. [95]
    Spielman, R.B., Deeney, C., Chandler, G.A., et al.: Tungsten wire-array Zpinchexperiments at 200 TW and 2 MJ. Phys. Plasmas 5(5), 2105–2111(1998). DOI 10.1063/1.872881CrossRefADSGoogle Scholar
  96. [96]
    Trunin, R.F.: Shock compressibility of condensed materials in strongshock waves generated by underground nuclear explosions. Phys. Usp. 37(11), 1123 (1994). DOI 10.1070/PU1994v037n11ABEH000055. URL
  97. [97]
    Trunin, R.F., Podurets, M.A., Simakov, G.V., et al.: An experimental verificationof the Thomas–Fermi model for metals under high pressure. Sov. Phys.– JETP 35, 550 (1972)ADSGoogle Scholar
  98. [98]
    Turchi, P.J., Baker, W.L.: Generation of high-energy plasmasby electromagnetic implosion. J. Appl. Phys. 44(11), 4936–4945 (1973). DOI 10.1063/1.1662066. URL Google Scholar
  99. [99]
    Vladimirov, A.S., Voloshin, N.P., Nogin, V.N., et al.: Shock compressibilityof aluminum at p > 1 Gbar. JETP Lett. 39(2), 82 (1984)ADSGoogle Scholar
  100. [100]
    Wikipedia: ISKRA lasers. URL{ISKRA}_la
  101. [101]
    Winterberg, F.: The magnetic booster target inertial confinement fusiondriver. Z. Naturforsch. A 39A, 325 (1984)ADSGoogle Scholar
  102. [102]
    Zababahin, E.I., Zababahin, I.E.: Yavleniya neogranichennoj kumulyacii(The phenomena of unlimited cumulating). Nauka, Moscow (1988)Google Scholar
  103. [103]
    Zasov, A.V., Postnov, K.A.: Obshchaya astrofizika (General Astrophysics).Vek 2, Fryazino (2006)Google Scholar
  104. [104]
    Zel’dovich, Y.B., Raizer, Y.P.: Fizika udarnykh voln i vysokotemperaturnykhgidrodinamicheskikh yavlenii, 2nd edn. Nauka, Moscow (1966). [EnglishTransl.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover, Mineola, NY (2002)]Google Scholar
  105. [105]
    Zhernokletov, M.V.: Shock compression and isentropic expansion of naturaluranium. High Temp. 36(2), 214–221 (1998)Google Scholar
  106. [106]
    Zhernokletov, M.V., Zubarev, V.N., Trunin, R.F., Fortov, V.E.: Eksperimental’nyedannye po udarnoi szhimaemosti i adiabaticheskomu rasshirenijukondensirovannyh vewestv pri vysokih plotnostjah energii (Experimentaldata on shock compressibility and adiabatic expansion of condensed matterat high energy density). IHF RAN, Chernogolovka (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Russian Academy of Sciences, Joint Institute for High TemperaturesMoscowRussia

Personalised recommendations